Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer's Disease or Depressive Disorder
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
29703883
PubMed Central
PMC5944403
DOI
10.12659/msm.907202
PII: 907202
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- Alzheimerova nemoc genetika MeSH
- demografie MeSH
- depresivní porucha unipolární genetika MeSH
- frekvence genu MeSH
- genetická epistáze * MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- genetické lokusy * MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- polymorfismus genetický * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer's disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. MATERIAL AND METHODS A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. RESULTS Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ε4 allele of APOE. CONCLUSIONS Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ε4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ε4 allele.
Zobrazit více v PubMed
Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96. PubMed PMC
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509. PubMed
Enache D, Winblad B, Aarsland D. Depression in dementia: Epidemiology, mechanisms, and treatment. Curr Opin Psychiatry. 2011;24:461–72. PubMed
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer’s disease: Genes, steroids, cytokines and neurogenesis – What do we need to know? Front Neuroendocrinol. 2016;41:153–171. PubMed
Butters MA, Klunk WE, Mathis CA, et al. Imaging Alzheimer pathology in late-life depression with PET and Pittsburgh Compound-B. Alzheimer Dis Assoc Disord. 2008;22:261–68. PubMed PMC
Li P, Hsiao IT, Liu CY, et al. Beta-amyloid deposition in patients with major depressive disorder with differing levels of treatment resistance: A pilot study. EJNMMI Res. 2017;7:24. PubMed PMC
Maes M, Fišar Z, Medina M, et al. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates – Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20:127–50. PubMed
Gałecki P, Talarowska M, Anderson G, et al. Mechanisms underlying neurocognitive dysfunctions in recurrent major depression. Med Sci Monit. 2015;27:1535–47. PubMed PMC
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016;139(Suppl 2):154–78. PubMed
Ye Q, Bai F, Zhang Z. Shared genetic risk factors for late-life depression and Alzheimer’s disease. J Alzheimers Dis. 2016;52:1–15. PubMed
Bizik G, Picard M, Nijjar R, et al. Allostatic load as a tool for monitoring physiological dysregulations and comorbidities in patients with severe mental illnesses. Harv Rev Psychiatry. 2013;21:296–313. PubMed
Stranahan AM. Chronobiological approaches to Alzheimer’s disease. Curr Alzheimer Res. 2012;9:93–98. PubMed
McClung CA. How might circadian rhythms control mood? Let me count the ways…. Biol Psychiatry. 2013;74:242–49. PubMed PMC
Burmeister M, McInnis MG, Zöllner S. Psychiatric genetics: Progress amid controversy. Nat Rev Genet. 2008;9:527–40. PubMed
Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81:484–503. PubMed PMC
Bagyinszky E, Youn YC, An SS, Kim S. The genetics of Alzheimer’s disease. Clin Interv Aging. 2014;9:535–51. PubMed PMC
Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered. 2003;56:73–82. PubMed
Sapkota Y, Mackey JR, Lai R, et al. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility. PLoS One. 2014;8:e64896. PubMed PMC
Elder BL, Mosack V. Genetics of depression: an overview of the current science. Issues Ment Health Nurs. 2011;32:192–202. PubMed
Lacerda-Pinheiro SF, Pinheiro Junior RF, Pereira de Lima MA, et al. Are there depression and anxiety genetic markers and mutations? A systematic review. J Affect Disord. 2014;168:387–98. PubMed
Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:311–19. PubMed
Mandelli L, Serretti A. Gene environment interaction studies in depression and suicidal behavior: An update. Neurosci Biobehav Rev. 2013;37(10 Pt 1):2375–97. PubMed
Yen YC, Rebok GW, Gallo JJ, et al. ApoE4 allele is associated with late-life depression: A population-based study. Am J Geriatr Psychiatry. 2007;15:858–68. PubMed
Zhang Z, Mu J, Li J, Li W, Song J. Aberrant apolipoprotein E expression and cognitive dysfunction in patients with poststroke depression. Genet Test Mol Biomarkers. 2013;17:47–51. PubMed PMC
Niti M, Yap KB, Kua EH, Ng TP. APOE-ɛ4, depressive symptoms, and cognitive decline in Chinese older adults: Singapore Longitudinal Aging Studies. J Gerontol A Biol Sci Med Sci. 2009;64:306–11. PubMed PMC
López-León S, Janssens AC, González-Zuloeta Ladd AM, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry. 2008;13:772–85. PubMed
Antypa N, Serretti A, Rujescu D. Serotonergic genes and suicide: A systematic review. Eur Neuropsychopharmacol. 2013;23:1125–42. PubMed
Dunn EC, Brown RC, Dai Y, et al. Genetic determinants of depression: Recent findings and future directions. Harv Rev Psychiatry. 2015;23:1–18. PubMed PMC
van Duijn CM, de Knijff P, Cruts M, et al. Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer’s disease. Nat Genet. 1994;7:74–78. PubMed
Bertram L, McQueen MB, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat Genet. 2007;39:17–23. PubMed
Chouraki V, Seshadri S. Genetics of Alzheimer’s disease. Adv Genet. 2014;87:245–94. PubMed
Ye Q, Bai F, Zhang Z. Shared genetic risk factors for late-life depression and Alzheimer’s disease. J Alzheimers Dis. 2016;52:1–15. PubMed
Engedal K, Barca ML, Laks J, Selbaek G. Depression in Alzheimer’s disease: Specificity of depressive symptoms using three different clinical criteria. Int J Geriatr Psychiatry. 2011;26:944–51. PubMed
Celi M, Vazzana M, Sanfratello MA, Parrinello N. Elevated cortisol modulates Hsp70 and Hsp90 gene expression and protein in sea bass head kidney and isolated leukocytes. Gen Comp Endocrinol. 2012;175:424–31. PubMed
Seripa D, D’Onofrio G, Panza F, et al. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011;14:491–500. PubMed
Mahley RW. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–30. PubMed
Mahley RW, Nathan BP, Pitas RE. Apolipoprotein E. Structure, function, and possible roles in Alzheimer’s disease. Ann NY Acad Sci. 1996;777:139–45. PubMed
Limon-Sztencel A, Lipska-Ziętkiewicz BS, Chmara M, et al. The algorithm for Alzheimer risk assessment based on APOE promoter polymorphisms. Alzheimers Res Ther. 2016;8:19. PubMed PMC
Feng F, Lu SS, Hu CY, et al. Association between apolipoprotein E gene polymorphism and depression. J Clin Neurosci. 2015;22:1232–38. PubMed
Gatt JM, Burton KL, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: A review of meta-analysis studies. J Psychiatr Res. 2015;60:1–13. PubMed
Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 2004;25:641–50. PubMed
Vélez JI, Lopera F, Sepulveda-Falla D, et al. APOE*E2 allele delays age of onset in PSEN1 E280A Alzheimer’s disease. Mol Psychiatry. 2016;21:916–24. PubMed PMC
Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J Steroid Biochem Mol Biol. 2016;160:134–47. PubMed PMC
Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–56. PubMed
Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9:768–78. PubMed
Kim N, Kim JY, Yenari MA. Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. 2012;20:177–85. PubMed
Pae CU, Mandelli L, Serretti A, et al. Heat-shock protein-70 genes and response to antidepressants in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1006–11. PubMed
Lu RC, Tan MS, Wang H, et al. Heat shock protein 70 in Alzheimer’s disease. Biomed Res Int. 2014;2014:435203. PubMed PMC
Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:353–71. PubMed PMC
Nakamura M, Ueno S, Sano A, Tanabe H. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry. 2000;5:32–38. PubMed
Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66:2621–24. PubMed
Anguelova M, Benkelfat C, Turecki G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry. 2003;8:574–91. PubMed
Fan JB, Sklar P. Meta-analysis reveals association between serotonin transporter gene STin2 VNTR polymorphism and schizophrenia. Mol Psychiatry. 2005;10:928–38. PubMed
Serretti A, Drago A, De Ronchi D. HTR2A gene variants and psychiatric disorders: A review of current literature and selection of SNPs for future studies. Curr Med Chem. 2007;14:2053–69. PubMed
Marner L, Knudsen GM, Madsen K, et al. The reduction of baseline serotonin 2A receptors in mild cognitive impairment is stable at two-year follow-up. J Alzheimers Dis. 2011;23:453–59. PubMed
Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer’s disease. Prog Neurobiol. 2012;99:15–41. PubMed
Fabbri C, Marsano A, Serretti A. Genetics of serotonin receptors and depression: State of the art. Curr Drug Targets. 2013;14:531–48. PubMed
Fehér A, Juhász A, László A, et al. Serotonin transporter and serotonin receptor 2A gene polymorphisms in Alzheimer’s disease. Neurosci Lett. 2013;534:233–36. PubMed
Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:54–63. PubMed
Guiard BP, Di Giovanni G. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: The missing link? Front Pharmacol. 2015;6:46. PubMed PMC
Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31. PubMed
Schinka JA, Busch RM, Robichaux-Keene N. A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Mol Psychiatry. 2004;9:197–202. PubMed
Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–89. PubMed
Lin SH, Lee IH, Chen KC, et al. Serotonin transporter availability may moderate the association between perceiving stress and depressive tendencies – A SPECT with 5-HTTLPR genotyping study. Prog Neuropsychopharmacol Biol Psychiatry. 2015;61:24–29. PubMed
Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch Gen Psychiatry. 2011;68:444–54. PubMed PMC
Munafò MR, Durrant C, Lewis G, Flint J. Gene X environment interactions at the serotonin transporter locus. Biol Psychiatry. 2009;65:211–19. PubMed
Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA. 2009;301:2462–71. PubMed PMC
Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012;22:239–58. PubMed
Tielbeek JJ, Karlsson Linnér R, et al. Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. Am J Med Genet B Neuropsychiatr Genet. 2016;171:748–60. PubMed
Murphy DL, Lesch KP. Targeting the murine serotonin transporter: Insights into human neurobiology. Nat Rev Neurosci. 2008;9:85–96. PubMed
Murphy DL, Moya PR. Human serotonin transporter gene (SLC6A4) variants: their contributions to understanding pharmacogenomic and other functional G×G and G×E differences in health and disease. Curr Opin Pharmacol. 2011;11:3–10. PubMed PMC
Murphy DL, Maile MS, Vogt NM. 5HTTLPR: White knight or dark blight? ACS Chem Neurosci. 2013;4:13–15. PubMed PMC
Saiz PA, García-Portilla MP, Paredes B, et al. Association between the A-1438G polymorphism of the serotonin 2A receptor gene and nonimpulsive suicide attempts. Psychiatr Genet. 2008;18:213–18. PubMed
Zhang G, Stackman RW. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225. PubMed PMC
Myers RL, Airey DC, Manier DH, et al. Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol Psychiatry. 2007;61:167–73. PubMed
Jin C, Xu W, Yuan J, et al. Meta-analysis of association between the –1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder. Neurol Res. 2013;35:7–14. PubMed
Kishi T, Yoshimura R, Kitajima T, et al. HTR2A is associated with SSRI response in major depressive disorder in a Japanese cohort. Neuromolecular Med. 2010;12:237–42. PubMed
Lin JY, Jiang MY, Kan ZM, Chu Y. Influence of 5-HTR2A genetic polymorphisms on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis. J Affect Disord. 2014;168:430–38. PubMed
Lai MK, Tsang SW, Alder JT, et al. Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease. Psychopharmacology (Berl) 2005;179:673–77. PubMed
Assal F, Alarcón M, Solomon EC, et al. Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer disease. Arch Neurol. 2004;61:1249–53. PubMed
Gotovac K, Nikolac Perković M, Pivac N, Borovečki F. Biomarkers of aggression in dementia. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:125–30. PubMed
Wilkosz PA, Kodavali C, Weamer EA, et al. Prediction of psychosis onset in Alzheimer disease: The role of depression symptom severity and the HTR2A T102C polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:1054–62. PubMed PMC
Ramanathan S, Glatt SJ. Serotonergic system genes in psychosis of Alzheimer dementia: Meta-analysis. Am J Geriatr Psychiatry. 2009;17:839–46. PubMed
Micheli D, Bonvicini C, Rocchi A, et al. No evidence for allelic association of serotonin 2A receptor and transporter gene polymorphisms with depression in Alzheimer disease. J Alzheimers Dis. 2006;10:371–78. PubMed
Verhagen M, van der Meij A, van Deurzen PA, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: Effects of gender and ethnicity. Mol Psychiatry. 2010;15:260–71. PubMed
Harrisberger F, Smieskova R, Schmidt A, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–18. PubMed
Ventriglia M, Bocchio Chiavetto L, Benussi L, et al. Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol Psychiatry. 2002;7:136–37. PubMed
Sklar P, Gabriel SB, McInnis MG, et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry. 2002;7:579–93. PubMed
Boiocchi C, Maggioli E, Zorzetto M, et al. Brain-derived neurotrophic factor gene variants and Alzheimer disease: An association study in an Alzheimer disease Italian population. Rejuvenation Res. 2013;16:57–66. PubMed
Borroni B, Grassi M, Archetti S, et al. BDNF genetic variations increase the risk of Alzheimer’s disease-related depression. J Alzheimers Dis. 2009;18:867–75. PubMed
Zhang L, Fang Y, Zeng Z, et al. BDNF gene polymorphisms are associated with Alzheimer’s disease-related depression and antidepressant response. J Alzheimers Dis. 2011;26:523–30. PubMed
Desai P, Nebes R, DeKosky ST, Kamboh MI. Investigation of the effect of brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset Alzheimer’s disease (AD) and quantitative measures of AD progression. Neurosci Lett. 2005;379:229–34. PubMed
Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5:311–22. PubMed
Song JH, Yu JT, Tan L. Brain-derived neurotrophic factor in Alzheimer’s disease: Risk, mechanisms, and therapy. Mol Neurobiol. 2015;52:1477–93. PubMed
Lee J, Fukumoto H, Orne J, et al. Decreased levels of BDNF protein in Alzheimer temporal cortex are independent of BDNF polymorphisms. Exp Neurol. 2005;194:91–96. PubMed
Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597–606. PubMed
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27. PubMed
Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol Psychiatry. 2008;64:527–32. PubMed PMC
Fišar Z. Pathophysiology of mood disorders and mechanisms of action of antidepressants and mood stabilizers. In: Van Bockstaele EJ, editor. Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. New York: Springer; 2013. pp. 103–34.
Fernandes BS, Berk M, Turck CW, et al. Decreased peripheral brain-derived neurotrophic factor levels are a biomarker of disease activity in major psychiatric disorders: A comparative meta-analysis. Mol Psychiatry. 2014;19:750–51. PubMed
Pláteník J, Fišar Z, Buchal R, et al. GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:83–93. PubMed
Castrén E. Neurotrophins and psychiatric disorders. Handb Exp Pharmacol. 2014;220:461–79. PubMed
Chen SL, Lee SY, Chang YH, et al. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:99–104. PubMed PMC
Duman RS, Li N. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci. 2012;367:2475–84. PubMed PMC
Duman RS. Pathophysiology of depression and innovative treatments: Remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci. 2014;16:11–27. PubMed PMC
Hock C, Heese K, Hulette C, et al. Region-specific neurotrophin imbalances in Alzheimer disease: Decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol. 2000;57:846–51. PubMed
Fumagalli F, Racagni G, Riva MA. The expanding role of BDNF: A therapeutic target for Alzheimer’s disease? Pharmacogenomics J. 2006;6:8–15. PubMed
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev. 2008;59:201–20. PubMed
Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: A meta-analysis study (N=7277) Mol Psychiatry. 2017;22:312–20. PubMed
Arancibia S, Silhol M, Moulière F, et al. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis. 2008;31:316–26. PubMed
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–39. PubMed PMC
Zvěřová M, Fišar Z, Jirák R, et al. Plasma cortisol in Alzheimer’s disease with or without depressive symptoms. Med Sci Monit. 2013;19:681–89. PubMed PMC
Kitzlerová E, Fišar Z, Jirák R, et al. Plasma homocysteine in Alzheimer’s disease with or without co-morbid depressive symptoms. Neuro Endocrinol Lett. 2014;35:42–49. PubMed
Hirschfeld RM, Montgomery SA, Aguglia E, et al. Partial response and nonresponse to antidepressant therapy: Current approaches and treatment options. J Clin Psychiatry. 2002;63:826–37. PubMed
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. PubMed PMC
Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31:545–48. PubMed
Betancur C, Corbex M, Spielewoy C, et al. Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol Psychiatry. 2002;7:67–71. PubMed PMC
Ricca V, Nacmias B, Boldrini M, et al. Psychopathological traits and 5-HT2A receptor promoter polymorphism (–1438 G/A) in patients suffering from Anorexia Nervosa and Bulimia Nervosa. Neurosci Lett. 2004;365:92–96. PubMed
Chou IC, Tsai CH, Lee CC, et al. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in febrile seizures. Epilepsy Res. 2004;60:27–29. PubMed
Lewis CM, Knight J. Introduction to genetic association studies. Cold Spring Harb Protoc. 2012;2012:297–306. PubMed
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J Royal Stat Soc Ser B. 1995;57:289–300.
Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: An approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42. PubMed PMC
Shen J, Li Z, Chen J, et al. SHEsisPlus, a toolset for genetic studies on polyploid species. Sci Rep. 2016;6:24095. PubMed PMC
Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–98. PubMed
Mackinnon A. A spreadsheet for the calculation of comprehensive statistics for the assessment of diagnostic tests and inter-rater agreement. Comput Biol Med. 2000;30:127–34. PubMed
Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, et al. Protective effects of hsp70 in inflammation. Experientia. 1994;50:1031–38. PubMed
Borges TJ, Wieten L, van Herwijnen MJ, et al. The anti-inflammatory mechanisms of Hsp70. Front Immunol. 2012;3:95. PubMed PMC
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–23. PubMed
Yu JT, Tan L, Hardy J. Apolipoprotein E in Alzheimer’s disease: An update. Annu Rev Neurosci. 2014;37:79–100. PubMed
Green RC, Cupples LA, Kurz A, et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol. 2003;60:753–59. PubMed
Ownby RL, Crocco E, Acevedo A, et al. Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63:530–38. PubMed PMC
Chen CP, Alder JT, Bowen DM, et al. Presynaptic serotonergic markers in community-acquired cases of Alzheimer’s disease: Correlations with depression and neuroleptic medication. J Neurochem. 1996;66:1592–98. PubMed
Lanctôt KL, Herrmann N, Mazzotta P. Role of serotonin in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci. 2001;13:5–21. PubMed
Ueki A, Ueno H, Sato N, et al. Serotonin transporter gene polymorphism and BPSD in mild Alzheimer’s disease. J Alzheimers Dis. 2007;12:245–53. PubMed
Skoog I, Waern M, Duberstein P, et al. A 9-year prospective population-based study on the association between the APOE*E4 allele and late-life depression in Sweden. Biol Psychiatry. 2015;78:730–36. PubMed
Weitkunat R, Kaelin E, Vuillaume G, Kallischnigg G. Effectiveness of strategies to increase the validity of findings from association studies: Size vs. replication. BMC Med Res Methodol. 2010;10:47. PubMed PMC
Broer L, Lill CM, Schuur M, et al. Distinguishing true from false positives in genomic studies: p values. Eur J Epidemiol. 2013;28:131–38. PubMed
Zhong L, Xie YZ, Cao TT, et al. A rapid and cost-effective method for genotyping apolipoprotein E gene polymorphism. Mol Neurodegener. 2016;11:2. PubMed PMC