• This record comes from PubMed

Triorganotin Derivatives Induce Cell Death Effects on L1210 Leukemia Cells at Submicromolar Concentrations Independently of P-glycoprotein Expression

. 2018 May 01 ; 23 (5) : . [epub] 20180501

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 29723984
PubMed Central PMC6100532
DOI 10.3390/molecules23051053
PII: molecules23051053
Knihovny.cz E-resources

The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family), represents a frequently observed molecular cause of multidrug resistance (MDR). This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives—tributyltin-chloride (TBT-Cl), tributyltin-bromide (TBT-Br), tributyltin-iodide (TBT-I) and tributyltin-isothiocyanate (TBT-NCS) or triphenyltin-chloride (TPT-Cl) and triphenyltin-isothiocyanate (TPT-NCS)—could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.

See more in PubMed

Tsimberidou A.M. Targeted therapy in cancer. Cancer Chemother. Pharmacol. 2015;76:1113–1132. doi: 10.1007/s00280-015-2861-1. PubMed DOI PMC

Kue C.S., Kamkaew A., Burgess K., Kiew L.V., Chung L.Y., Lee H.B. Small molecules for active targeting in cancer. Med. Res. Rev. 2016;36:494–575. doi: 10.1002/med.21387. PubMed DOI

Emmons M.F., Faiao-Flores F., Smalley K.S. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem. Pharmacol. 2016;122:1–9. doi: 10.1016/j.bcp.2016.06.014. PubMed DOI PMC

Messingerova L., Imrichova D., Coculova M., Zelina M., Pavlikova L., Kavcova H., Seres M., Bohacova V., Lakatos B., Sulova Z., et al. Different mechanisms of drug resistance in myelodysplastic syndromes and acute myeloid leukemia. In: Fusch O., editor. Myelodysplastic Syndromes. Intech Open Science Open Minds; London, UK: 2016. pp. 181–200.

Kibria G., Hatakeyama H., Harashima H. Cancer multidrug resistance: Mechanisms involved and strategies for circumvention using a drug delivery system. Arch. Pharm. Res. 2014;37:4–15. doi: 10.1007/s12272-013-0276-2. PubMed DOI

Breier A., Gibalova L., Seres M., Barancik M., Sulova Z. New insight into P-glycoprotein as a drug target. Anticancer Agents Med. Chem. 2013;13:159–170. doi: 10.2174/187152013804487380. PubMed DOI

Breier A., Barancik M., Sulova Z., Uhrik B. P-glycoprotein—Implications of metabolism of neoplastic cells and cancer therapy. Curr. Cancer Drug Targets. 2005;5:457–468. doi: 10.2174/1568009054863636. PubMed DOI

Hunakova L., Macejova D., Toporova L., Brtko J. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF-7 and MDA-MB-231. Tumour Biol. 2016;37:6701–6708. doi: 10.1007/s13277-015-4524-6. PubMed DOI

Fickova M., Macho L., Brtko J. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic P53, bax, and antiapoptotic BCL-2 protein levels in human breast cancer MCF-7 cell line. Toxicol. In Vitro. 2015;29:727–731. doi: 10.1016/j.tiv.2015.02.007. PubMed DOI

Brtko J., Dvorak Z. Triorganotin compounds—Ligands for “rexinoid” inducible transcription factors: Biological effects. Toxicol. Lett. 2015;234:50–58. doi: 10.1016/j.toxlet.2015.02.009. PubMed DOI

Hiromori Y., Yui H., Nishikawa J., Nagase H., Nakanishi T. Organotin compounds cause structure-dependent induction of progesterone in human choriocarcinoma jar cells. J. Steroid Biochem. Mol. Biol. 2016;155:190–198. doi: 10.1016/j.jsbmb.2014.10.010. PubMed DOI

Illes P., Brtko J., Dvorak Z. Development and characterization of a human reporter cell line for the assessment of thyroid receptor transcriptional activity: A case of organotin endocrine disruptors. J. Agric. Food Chem. 2015;63:7074–7083. doi: 10.1021/acs.jafc.5b01519. PubMed DOI

Macejova D., Toporova L., Brtko J. The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals. Endocr. Regul. 2016;50:154–164. doi: 10.1515/enr-2016-0018. PubMed DOI

Sapozhnikova Y., Wirth E., Schiff K., Brown J., Fulton M. Antifouling pesticides in the coastal waters of southern california. Mar. Pollut. Bull. 2007;54:1972–1978. doi: 10.1016/j.marpolbul.2007.09.026. PubMed DOI

Escher B.I., Sigg L. Physicochemical Kinetics and Transport at Biointerfaces. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2004. Chemical speciation of organics and of metals at biological interphases; pp. 205–269.

Arnold C.G., Weidenhaupt A., David M.M., Muller S.R., Haderlein S.B., Schwarzenbach R.P. Aqueous speciation and 1-octanol-water partitioning of tributyl- and triphenyltin: Effect of ph and ion composition. Environ. Sci. Technol. 1997;31:2596–2602. doi: 10.1021/es970009+. DOI

Novotny L., Sharaf L., Abdel-Hamid M.E., Brtko J. Stability studies of endocrine disrupting tributyltin and triphenyltin compounds in an artificial sea water model. Gen. Physiol. Biophys. 2018;37:93–99. doi: 10.4149/gpb_2017051. PubMed DOI

Kobayashi-Hattori K., Watanabe T., Kimura K., Sugita-Konishi Y. Down-regulation of mdr1b mRNA expression in the kidneys of mice following maternal exposure to tributyltin chloride. Biosci. Biotechnol. Biochem. 2006;70:1242–1245. doi: 10.1271/bbb.70.1242. PubMed DOI

Tsukazaki M., Satsu H., Mori A., Sugita-Konishi Y., Shimizu M. Effects of tributyltin on barrier functions in human intestinal Caco-2 cells. Biochem. Biophys. Res. Commun. 2004;315:991–997. doi: 10.1016/j.bbrc.2004.01.147. PubMed DOI

Polekova L., Barancik M., Mrazova T., Pirker R., Wallner J., Sulova Z., Breier A. Adaptation of mouse leukemia cells L1210 to vincristine. Evidence for expression of p-glycoprotein. Neoplasma. 1992;39:73–77. PubMed

Sulova Z., Ditte P., Kurucova T., Polakova E., Rogozanova K., Gibalova L., Seres M., Skvarkova L., Sedlak J., Pastorek J., et al. The presence of P-glycoprotein in L1210 cells directly induces down-regulation of cell surface saccharide targets of concanavalin a. Anticancer Res. 2010;30:3661–3668. PubMed

Pavlikova L., Seres M., Imrichova D., Hano M., Rusnak A., Zamorova M., Katrlik J., Breier A., Sulova Z. The expression of P-gp in leukemia cells is associated with cross-resistance to protein n-glycosylation inhibitor tunicamycin. Gen. Physiol. Biophys. 2016;35:497–510. doi: 10.4149/gpb_2016039. PubMed DOI

Schuetz J.D., Schuetz E.G. Extracellular matrix regulation of multidrug resistance in primary monolayer cultures of adult rat hepatocytes. Cell Growth Differ. 1993;4:31–40. PubMed

Seres M., Cholujova D., Bubencikova T., Breier A., Sulova Z. Tunicamycin depresses p-glycoprotein glycosylation without an effect on its membrane localization and drug efflux activity in l1210 cells. Int. J. Mol. Sci. 2011;12:7772–7784. doi: 10.3390/ijms12117772. PubMed DOI PMC

Balas V.I., Banti C.N., Kourkoumelis N., Hadjikakou S.K., Geromichalos G.D., Sahpazidou D., Male L., Hursthouse M.B., Bednarz B., Kubicki M., et al. Structural and in vitro biological studies of organotin (IV) precursors; selective inhibitory activity against human breast cancer cells, positive to estrogen receptors. Aust. J. Chem. 2012;65:1625–1637. doi: 10.1071/CH12448. DOI

Mire-Sluis A.R., Healey L., Griffiths S., Hockley D., Thorpe R. Development of a continuous IL-7-dependent murine pre-B cell line PB-1 suitable for the biological characterisation and assay of human IL-7. J. Immunol. Methods. 2000;236:71–76. doi: 10.1016/S0022-1759(99)00237-9. PubMed DOI

Uhrik B., Tribulova N., Klobusicka M., Barancik M., Breier A. Characterization of morphological and histochemical changes induced by overexpression of P-glycoprotein in mouse leukemic cell line l1210. Neoplasma. 1994;41:83–88. PubMed

Waseem D., Butt A.F., Haq I.U., Bhatti M.H., Khan G.M. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents. Daru. 2017;25:8. doi: 10.1186/s40199-017-0174-0. PubMed DOI PMC

Lam A., Hoang J.D., Singleton A., Han X., Bleier B.S. Itraconazole and clarithromycin inhibit P-glycoprotein activity in primary human sinonasal epithelial cells. Int. Forum Allergy Rhinol. 2015;5:477–480. doi: 10.1002/alr.21454. PubMed DOI

Nocera A.L., Miyake M.M., Seifert P., Han X., Bleier B.S. Exosomes mediate interepithelial transfer of functional P-glycoprotein in chronic rhinosinusitis with nasal polyps. Laryngoscope. 2017;127:E295–E300. doi: 10.1002/lary.26614. PubMed DOI

Kim R.B. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab. Rev. 2002;34:47–54. doi: 10.1081/DMR-120001389. PubMed DOI

Crowley L.C., Marfell B.J., Scott A.P., Waterhouse N.J. Quantitation of apoptosis and necrosis by annexin v binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc. 2016;2016:pdb-prot087288. doi: 10.1101/pdb.prot087288. PubMed DOI

Del Principe M.I., Del Poeta G., Maurillo L., Buccisano F., Venditti A., Tamburini A., Bruno A., Cox M.C., Suppo G., Tendas A., et al. P-glycoprotein and BCL-2 levels predict outcome in adult acute lymphoblastic leukaemia. Br. J. Haematol. 2003;121:730–738. doi: 10.1046/j.1365-2141.2003.04343.x. PubMed DOI

Pituch-Noworolska A., Hajto B., Balwierz W., Klus K. Induction of apoptosis and BCL-2 expression in acute lymphoblastic leukaemia and non-hodgkin’s lymphoma in children. Haematologia. 2001;31:191–207. doi: 10.1163/15685590152763737. PubMed DOI

Hardwick J.M., Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb. Perspect. Biol. 2013;5 doi: 10.1101/cshperspect.a008722. PubMed DOI PMC

Tainton K.M., Smyth M.J., Jackson J.T., Tanner J.E., Cerruti L., Jane S.M., Darcy P.K., Johnstone R.W. Mutational analysis of P-glycoprotein: Suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ. 2004;11:1028–1037. doi: 10.1038/sj.cdd.4401440. PubMed DOI

Breier A., Drobna Z., Docolomansky P., Barancik M. Cytotoxic activity of several unrelated drugs on L1210 mouse leukemic cell sublines with P-glycoprotein (PGP) mediated multidrug resistance (MDR) phenotype. A qsar study. Neoplasma. 2000;47:100–106. PubMed

Seltzer R. The reactions of organotin chlorides with the cyanodithioimidocarbonate anion. J. Org. Chem. 1968;33:3896–3900. doi: 10.1021/jo01274a044. DOI

Wharf I. Studies in aryltin chemistry. Part 5. Tin-119 and carbon-13 NMR spectra of some tetra- and tri-aryltin compounds. Inorg. Chim. Acta. 1989;159:41–48. doi: 10.1016/S0020-1693(00)80893-2. DOI

Pastan I., Gottesman M.M., Ueda K., Lovelace E., Rutherford A.V., Willingham M.C. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA. 1988;85:4486–4490. doi: 10.1073/pnas.85.12.4486. PubMed DOI PMC

Gerlier D., Thomasset N. Use of mtt colorimetric assay to measure cell activation. J. Immunol. Methods. 1986;94:57–63. doi: 10.1016/0022-1759(86)90215-2. PubMed DOI

Eneroth A., Astrom E., Hoogstraate J., Schrenk D., Conrad S., Kauffmann H.M., Gjellan K. Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. Eur. J. Pharm. Sci. 2001;12:205–214. doi: 10.1016/S0928-0987(00)00117-2. PubMed DOI

Orlicky J., Sulova Z., Dovinova I., Fiala R., Zahradnikova A., Jr., Breier A. Functional fluo-3/AM assay on P-glycoprotein transport activity in L1210/VCR cells by confocal microscopy. Gen. Physiol. Biophys. 2004;23:357–366. PubMed

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...