Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29750270
PubMed Central
PMC6158597
DOI
10.1093/nar/gky368
PII: 4994678
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro genetika ultrastruktura MeSH
- buněčné linie MeSH
- DNA analýza MeSH
- heterochromatin * MeSH
- histonový kód * MeSH
- histony metabolismus MeSH
- jaderná lamina ultrastruktura MeSH
- jaderný pór ultrastruktura MeSH
- metylace MeSH
- myši MeSH
- načasování replikace DNA * MeSH
- S fáze genetika MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- heterochromatin * MeSH
- histony MeSH
The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.
Zobrazit více v PubMed
Chagin V.O., Stear J.H., Cardoso M.C.. Organization of DNA replication. Cold Spring Harb. Perspect. Biol. 2010; 2:a000737. PubMed PMC
Jackson D.A., Pombo A.. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 1998; 140:1285–1295. PubMed PMC
Leonhardt H., Rahn H.P., Weinzierl P., Sporbert A., Cremer T., Zink D., Cardoso M.C.. Dynamics of DNA replication factories in living cells. J. Cell Biol. 2000; 149:271–280. PubMed PMC
Nakamura H., Morita T., Sato C.. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 1986; 165:291–297. PubMed
Fox M.H., Arndt-Jovin D.J., Jovin T.M., Baumann P.H., Robert-Nicoud M.. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci. 1991; 99:247–253. PubMed
Baddeley D., Chagin V.O., Schermelleh L., Martin S., Pombo A., Carlton P.M., Gahl A., Domaing P., Birk U., Leonhardt H. et al. . Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res. 2010; 38:e8. PubMed PMC
Lob D., Lengert N., Chagin V.O., Reinhart M., Casas-Delucchi C.S., Cardoso M.C., Drossel B.. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression. Nat. Commun. 2016; 7:11207. PubMed PMC
Chagin V.O., Casas-Delucchi C.S., Reinhart M., Schermelleh L., Markaki Y., Maiser A., Bolius J.J., Bensimon A., Fillies M., Domaing P. et al. . 4D Visualization of replication foci in mammalian cells corresponding to individual replicons. Nat. Commun. 2016; 7:11231. PubMed PMC
Casas-Delucchi C.S., Cardoso M.C.. Epigenetic control of DNA replication dynamics in mammals. Nucleus. 2011; 2:370–382. PubMed
Pope B.D., Gilbert D.M.. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J. Mol. Biol. 2013; 425:4690–4695. PubMed PMC
Farkash-Amar S., Lipson D., Polten A., Goren A., Helmstetter C., Yakhini Z., Simon I.. Global organization of replication time zones of the mouse genome. Genome Res. 2008; 18:1562–1570. PubMed PMC
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J. Cell Biol. 2015; 208:147–160. PubMed PMC
Gilbert D.M. Making sense of eukaryotic DNA replication origins. Science. 2001; 294:96–100. PubMed PMC
Cayrou C., Coulombe P., Puy A., Rialle S., Kaplan N., Segal E., Mechali M.. New insights into replication origin characteristics in metazoans. Cell Cycle. 2012; 11:658–667. PubMed PMC
Cayrou C., Coulombe P., Vigneron A., Stanojcic S., Ganier O., Peiffer I., Rivals E., Puy A., Laurent-Chabalier S., Desprat R. et al. . Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2011; 21:1438–1449. PubMed PMC
Raghuraman M.K., Brewer B.J., Fangman W.L.. Cell cycle-dependent establishment of a late replication program. Science. 1997; 276:806–809. PubMed
Aladjem M.I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat. Rev. Genet. 2007; 8:588–600. PubMed
Schwaiger M., Stadler M.B., Bell O., Kohler H., Oakeley E.J., Schubeler D.. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 2009; 23:589–601. PubMed PMC
Casas-Delucchi C.S., van Bemmel J.G., Haase S., Herce H.D., Nowak D., Meilinger D., Stear J.H., Leonhardt H., Cardoso M.C.. Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin. Nucleic Acids Res. 2012; 40:159–169. PubMed PMC
Jorgensen H.F., Azuara V., Amoils S., Spivakov M., Terry A., Nesterova T., Cobb B.S., Ramsahoye B., Merkenschlager M., Fisher A.G.. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 2007; 8:R169. PubMed PMC
O’Keefe R.T., Henderson S.C., Spector D.L.. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 1992; 116:1095–1110. PubMed PMC
Wu R., Singh P.B., Gilbert D.M.. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol. 2006; 174:185–194. PubMed PMC
Casas-Delucchi C.S., Brero A., Rahn H.P., Solovei I., Wutz A., Cremer T., Leonhardt H., Cardoso M.C.. Histone acetylation controls the inactive X chromosome replication dynamics. Nat. Commun. 2011; 2:222. PubMed PMC
Kemp M.G., Ghosh M., Liu G., Leffak M.. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res. 2005; 33:325–336. PubMed PMC
Schwaiger M., Kohler H., Oakeley E.J., Stadler M.B., Schubeler D.. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 2010; 20:771–780. PubMed PMC
Vogelauer M., Rubbi L., Lucas I., Brewer B.J., Grunstein M.. Histone acetylation regulates the time of replication origin firing. Mol. Cell. 2002; 10:1223–1233. PubMed
Dimitrova D.S., Gilbert D.M.. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell. 1999; 4:983–993. PubMed
Ebrahimi H., Robertson E.D., Taddei A., Gasser S.M., Donaldson A.D., Hiraga S.. Early initiation of a replication origin tethered at the nuclear periphery. J. Cell Sci. 2010; 123:1015–1019. PubMed PMC
Jones K.W. Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature. 1970; 225:912–915. PubMed
Vissel B., Choo K.H.. Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics. 1989; 5:407–414. PubMed
Brero A., Easwaran H.P., Nowak D., Grunewald I., Cremer T., Leonhardt H., Cardoso M.C.. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J. Cell Biol. 2005; 169:733–743. PubMed PMC
Rothbauer U., Zolghadr K., Muyldermans S., Schepers A., Cardoso M.C., Leonhardt H.. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteomics. 2008; 7:282–289. PubMed
Rothbauer U., Zolghadr K., Tillib S., Nowak D., Schermelleh L., Gahl A., Backmann N., Conrath K., Muyldermans S., Cardoso M.C. et al. . Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods. 2006; 3:887–889. PubMed
Kirchhofer A., Helma J., Schmidthals K., Frauer C., Cui S., Karcher A., Pellis M., Muyldermans S., Casas-Delucchi C.S., Cardoso M.C. et al. . Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 2010; 17:133–138. PubMed
Thanisch K., Schneider K., Morbitzer R., Solovei I., Lahaye T., Bultmann S., Leonhardt H.. Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res. 2014; 42:e38. PubMed PMC
Lindhout B.I., Fransz P., Tessadori F., Meckel T., Hooykaas P.J., van der Zaal B.J.. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res. 2007; 35:e107. PubMed PMC
Anton T., Bultmann S., Leonhardt H., Markaki Y.. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus. 2014; 5:163–172. PubMed PMC
Yaffe D., Saxel O.. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977; 270:725–727. PubMed
Peters A.H., O’Carroll D., Scherthan H., Mechtler K., Sauer S., Schofer C., Weipoltshammer K., Pagani M., Lachner M., Kohlmaier A. et al. . Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001; 107:323–337. PubMed
Sporbert A., Domaing P., Leonhardt H., Cardoso M.C.. PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic Acids Res. 2005; 33:3521–3528. PubMed PMC
Salic A., Mitchison T.J.. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U.S.A. 2008; 105:2415–2420. PubMed PMC
Herce H.D., Casas-Delucchi C.S., Cardoso M.C.. New image colocalization coefficient for fluorescence microscopy to quantify (bio-)molecular interactions. J. Microsc. 2013; 249:184–194. PubMed PMC
Maeshima K., Yahata K., Sasaki Y., Nakatomi R., Tachibana T., Hashikawa T., Imamoto F., Imamoto N.. Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J. Cell Sci. 2006; 119:4442–4451. PubMed
Shimi T., Pfleghaar K., Kojima S., Pack C.G., Solovei I., Goldman A.E., Adam S.A., Shumaker D.K., Kinjo M., Cremer T. et al. . The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 2008; 22:3409–3421. PubMed PMC
Rhind N., Gilbert D.M.. DNA replication timing. Cold Spring Harb. Perspect. Biol. 2013; 5:a010132. PubMed PMC
Sporbert A., Gahl A., Ankerhold R., Leonhardt H., Cardoso M.C.. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell. 2002; 10:1355–1365. PubMed
Shang W.H., Hori T., Martins N.M.C., Toyoda A., Misu S., Monma N., Hiratani I., Maeshima K., Ikeo K., Fujiyama A. et al. . Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell. 2013; 24:635–648. PubMed PMC