Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines

. 2018 ; 13 (6) : e0198758. [epub] 20180611

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29889875

Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1-0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat.

Zobrazit více v PubMed

Farkas A, Molnár I, Kiss T, Karsai I, Molnár-Láng M. Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica. 2014;195: 45–55. doi: 10.1007/s10681-013-0970-7 DOI

Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, et al. Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: An example of marker-assisted line development. Theor Appl Genet. 1998;96: 123–131. doi: 10.1007/s001220050718 DOI

Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, et al. Effect of population size on the estimation of QTL: A test using resistance to barley stripe rust. Theor Appl Genet. 2005;111: 1260–1270. doi: 10.1007/s00122-005-0043-y PubMed DOI

Darkó É, Barnabás B, Molnár-Láng M. Characterization of newly developed wheat/barley introgression lines in respect of aluminium tolerance. Am J Plant Sci. 2012;3: 1462–1469. doi: 10.4236/ajps.2012.310176 DOI

Darkó É, Janda T, Majláth I, Szopkó D, Dulai S, Molnár I, et al. Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas.” Euphytica. 2015;203: 491–504. doi: 10.1007/s10681-014-1245-7 DOI

Darkó É, Gierczik K, Hudák O, Forgó P, Pál M, Türkösi E, et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS One. 2017;12: 1–20. doi: 10.1371/journal.pone.0174170 PubMed DOI PMC

Szopkó D, Darkó É, Molnár I, Kruppa K, Háló B, Vojtkó A, et al. Photosynthetic responses of a wheat (Asakaze)–barley (Manas) 7H addition line to salt stress. Photosynthetica. 2017;55: 317–328. doi: 10.1007/s11099-016-0241-7 DOI

Karsai I, Mészáros K, Láng L, Bedő Z. Identification of chromosome regions involved in the genetic regulation of tillering in barley (Hordeum vulgare L.). Acta Agron Hungarica. 2006;54: 15–23. doi: 10.1556/AAgr.54.2006.1.2 DOI

Türkösi E, Farkas A, Aranyi NR, Hoffmann B, Tóth V, Molnár-Láng M. Improvement of the agronomic traits of a wheat–barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar. Genome. NRC Research Press; 2014;57: 601–607. doi: 10.1139/gen-2014-0187 PubMed DOI

Jukanti AK, Fischer AM. A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization. Physiol Plant. 2008;132: 426–439. doi: 10.1111/j.1399-3054.2007.01044.x PubMed DOI

Cseh A, Soos V, Rakszegi M, Türkösi E, Balázs E, Molnár-Láng M. Expression of HvCslF9 and HvCslF6 barley genes in the genetic background of wheat and their influence on the wheat β-glucan content. Ann Appl Biol. 2013;163: 142–150. doi: 10.1111/aab.12043 DOI

Molnár-Láng M, Linc G. Wheat-barley hybrids and introgression lines. In: Molnár-Láng M, Ceoloni C, Doležel J, editors. Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Springer International Publishing; 2015. p. 315–345. doi: 10.1007/978-3-319-23494-6 DOI

Islam AKMR, Shepherd KW, Sparrow DHB. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity (Edinb). 1981;46: 161–174. doi: 10.1038/hdy.1981.24 DOI

Szakács É, Molnár-Láng M. Development and molecular cytogenetic identification of new winter wheat–winter barley (“Martonvásári 9 kr1”–“Igri”) disomic addition lines. Genome. 2007;50: 43–50. doi: 10.1139/g06-134 PubMed DOI

Molnár-Láng M, Novotny C, Linc G, Nagy ED. Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progeny using GISH and SSR markers. Plant Breed. Blackwell Publishing Ltd; 2005;124: 247–252. doi: 10.1111/j.1439-0523.2005.01097.x DOI

Szakács É, Molnár-Láng M. Identification of new winter wheat–winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole “Martonvásári 9 kr1”–“Igri” addition set. Genome. 2010;53: 35–44. doi: 10.1139/g09-085 PubMed DOI

Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet. 2001;103: 161–170. doi:https://doi.org/10.1007/s001220000503 DOI

Siahsar BA, Narouei M. Mapping QTLs of physiological traits associated with salt tolerance in Steptoe × Morex doubled haploid lines of barley at seedling stage. J Food, Agric Environ. 2014;8: 2.

Koba T, Handa T, Shimada T. Efficient production of wheat-barley hybrids and preferential elimination of barley chromosomes. Theor Appl Genet. 1991;81: 285–292. doi: 10.1007/BF00228665 PubMed DOI

Molnár-Láng M, Kőszegi B, Linc G, Galiba G, Sutka J. Chromosome instability of wheat/barley ditelosomic addition lines in tissue culture. Cereal Res Commun. 1996;24: 275–281. doi: 10.2307/23784213 DOI

Molnár-Láng M, Linc G, Logojan A, Sutka J. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare) Genome. NRC Research Press; Ottawa, Canada; 2000;43: 1045–1054. doi: 10.1139/g00-079 PubMed DOI

Nagy E. D, Molnár-Láng M, Linc G, Láng L. Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome. 2002;45: 1238–1247. doi: 10.1139/g02-068 PubMed DOI

Kruppa K, Sepsi A, Szakács É, Röder MS, Molnár-Láng M. Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers. J Appl Genet. Springer Berlin Heidelberg; 2013;54: 251–258. doi: 10.1007/s13353-013-0152-2 PubMed DOI

Molnár-Láng M, Linc G, Sutka J. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica. 1996;90: 301–305. doi: 10.1007/BF00027480 DOI

Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151: 496–505. doi: 10.1104/pp.109.142612 PubMed DOI PMC

Mayer KFX, Martis M, Hedley PE, Simková H, Liu H, Morris JA, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23: 1249–1263. doi: 10.1105/tpc.110.082537 PubMed DOI PMC

Mikó P, Löschenberger F, Hiltbrunner J, Aebi R, Megyeri M, Kovács G, et al. Comparison of bread wheat varieties with different breeding origin under organic and low input management. Euphytica. 2014;199: 69–80. doi: 10.1007/s10681-014-1171-8 DOI

Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica. Kluwer Academic Publishers; 1994;73: 199–212. doi: 10.1007/BF00036700 DOI

Schubert I, Shi F, Fuchs J, Endo TR. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. Blackwell Science Ltd; 1998;14: 489–495. doi: 10.1046/j.1365-313X.1998.00125.x DOI

Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. Oxford University Press; 1979;7: 1869–1885. doi: 10.1093/nar/7.7.1869 PubMed DOI PMC

Pedersen C, Linde-Laursen IB. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosom Res. Kluwer Academic Publishers; 1994;2: 65–71. doi: 10.1007/BF01539456 PubMed DOI

Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics. 2000;156: 2033–2041. PubMed PMC

Hudakova S, Michalek W, Presting GG, Hoopen RT, Santos KD, Jasencakova Z, et al. Sequence organization of barley centromeres. Nucleic Acids Res. Oxford University Press; 2001;29: 5029–5035. doi: 10.1093/nar/29.24.5029 PubMed DOI PMC

Reader SM, Abbo S, Purdie KA, King IP, Miller TE. Direct labelling of plant chromosomes by rapid in situ hybridization. Trends Genet. 1994;10: 265–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/7940753 PubMed

Molnár-Láng M, Linc G, Friebe BR, Sutka J. Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica. Kluwer Academic Publishers; 2000;112: 117–123. doi: 10.1023/A:1003840200744 DOI

Linc G, Friebe BR, Kynast RG, Molnar-Lang M, Kőszegi B, Sutka J, et al. Molecular cytogenetic analysis of Aegilops cylindrica host. Genome. 1999;42: 497–503. doi: 10.1139/g98-151 PubMed DOI

Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M, et al. Characterization of a new 4BS.7HL wheat–barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome. 2011;54: 795–804. doi: 10.1139/g11-044 PubMed DOI

Spannagl M, Martis MM, Pfeifer M, Nussbaumer T, Mayer KF. Analysing complex Triticeae genomes—concepts and strategies. Plant Methods. BioMed Central; 2013;9: 35 doi: 10.1186/1746-4811-9-35 PubMed DOI PMC

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot. Oxford University Press; 1998;82: 17–26. doi: 10.1093/oxfordjournals.aob.a010312 DOI

Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, et al. Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet. 2006;113: 651–659. doi: 10.1007/s00122-006-0329-8 PubMed DOI

Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009;10: 582 doi: 10.1186/1471-2164-10-582 PubMed DOI PMC

Mascher M, Stein N. Genetic anchoring of whole-genome shotgun assemblies. Front Genet. 2014;5: 208 doi: 10.3389/fgene.2014.00208 PubMed DOI PMC

Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Léon J. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet. 2014;15: 107 doi: 10.1186/s12863-014-0107-6 PubMed DOI PMC

Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, et al. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics. 2011;12: 4 doi: 10.1186/1471-2164-12-4 PubMed DOI PMC

Peighambari SA, Samadi BY, Nabipour A, Charmet G, Sarrafi A. QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. Plant Sci. 2005;169: 1008–1013. doi: 10.1016/j.plantsci.2005.05.018 DOI

Börner A, Plaschke J, Korzun V, Worland AJ. The relationships between the dwarfing genes of wheat and rye. Euphytica. Kluwer Academic Publishers; 1996;89: 69–75. doi: 10.1007/BF00015721 DOI

McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, et al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × “AC Domain.” Genome. NRC Research Press; Ottawa, Canada; 2005;48: 870–883. doi: 10.1139/g05-055 PubMed DOI

Gulyás G, Bognár Z, Láng L, Rakszegi M, Bedõ Z. Distribution of dwarfing genes (Rht-B1b and Rht-D1b) in Martonvásár wheat breeding materials. Acta Agron Hungarica. 2011;59: 249–254. doi: 10.1556/AAgr.59.2011.3.8 DOI

Khlestkina EK, Kumar U, Röder MS. Ent-kaurenoic acid oxidase genes in wheat. Mol Breed. 2010;25: 251–258. doi: 10.1007/s11032-009-9326-3 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...