Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29891919
PubMed Central
PMC5995804
DOI
10.1038/s41598-018-25545-y
PII: 10.1038/s41598-018-25545-y
Knihovny.cz E-resources
- MeSH
- Biosynthetic Pathways genetics MeSH
- Biotin biosynthesis MeSH
- Bedbugs microbiology MeSH
- Symbiosis * MeSH
- Genetic Speciation * MeSH
- Wolbachia classification genetics isolation & purification metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biotin MeSH
Wolbachia bacteria, vertically transmitted intracellular endosymbionts, are associated with two major host taxa in which they show strikingly different symbiotic modes. In some taxa of filarial nematodes, where Wolbachia are strictly obligately beneficial to the host, they show complete within- and among-species prevalence as well as co-phylogeny with their hosts. In arthropods, Wolbachia usually are parasitic; if beneficial effects occurs, they can be facultative or obligate, related to host reproduction. In arthropods, the prevalence of Wolbachia varies within and among taxa, and no co-speciation events are known. However, one arthropod species, the common bedbug Cimex lectularius was recently found to be dependent on the provision of biotin and riboflavin by Wolbachia, representing a unique case of Wolbachia providing nutritional and obligate benefits to an arthropod host, perhaps even in a mutualistic manner. Using the presence of presumably functional biotin gene copies, our study demonstrates that the obligate relationship is maintained at least in 10 out of 15 species of the genera Cimex and Paracimex. The remaining five species harboured Wolbachia as well, demonstrating the first known case of 100% prevalence of Wolbachia among higher arthropod taxa. Moreover, we show the predicted co-cladogenesis between Wolbachia and their bedbug hosts, also as the first described case of Wolbachia co-speciation in arthropods.
Technische Universität Dresden Department of Biology Applied Zoology D 01069 Dresden Germany
The Natural History Collections University Museum of Bergen P O Box 7800 N 5020 Bergen Norway
See more in PubMed
Bronstein JL. Our Current Understanding of Mutualism. Q. Rev. Biol. 1994;69:31–51. doi: 10.1086/418432. DOI
Mushegian AA, Ebert D. Rethinking “mutualism” in diverse host-symbiont communities. BioEssays. 2016;38:100–108. doi: 10.1002/bies.201500074. PubMed DOI
Moran NA, Baumann P. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 2000;3:270–275. doi: 10.1016/S1369-5274(00)00088-6. PubMed DOI
Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts: Wolbachia mutualisms in arthropods. Biol. Rev. 2015;90:89–111. doi: 10.1111/brv.12098. PubMed DOI
Zug R, Koehncke A, Hammerstein P. Epidemiology in evolutionary time: the case of Wolbachia horizontal transmission between arthropod host species. J. Evol. Biol. 2012;25:2149–2160. doi: 10.1111/j.1420-9101.2012.02601.x. PubMed DOI
de Vienne DM, et al. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 2013;198:347–385. doi: 10.1111/nph.12150. PubMed DOI
Hafner MS, Nadler SA. Cospeciation in Host-Parasite Assemblages: Comparative Analysis of Rates of Evolution and Timing of Cospeciation Events. Syst. Zool. 1990;39:192–204. doi: 10.2307/2992181. DOI
Werren JH, Zhang W, Li RG. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. R. Soc. Lond. B Biol. Sci. 1995;261:55. doi: 10.1098/rspb.1995.0117. PubMed DOI
Lefoulon E, et al. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ. 2016;4:e1840. doi: 10.7717/peerj.1840. PubMed DOI PMC
Werren JH. Biology of wolbachia. Annu. Rev. Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. PubMed DOI
Fenn K, Blaxter M. Are filarial nematode Wolbachia obligate mutualist symbionts? Trends Ecol. Evol. 2004;19:163–166. doi: 10.1016/j.tree.2004.01.002. PubMed DOI
Strübing U, Lucius R, Hoerauf A, Pfarr KM. Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes. Int. J. Parasitol. 2010;40:1193–1202. doi: 10.1016/j.ijpara.2010.03.004. PubMed DOI
Darby AC, et al. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res. 2012;22:2467–2477. doi: 10.1101/gr.138420.112. PubMed DOI PMC
Brown AMV, et al. Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Sci. Rep. 2016;6:34955. doi: 10.1038/srep34955. PubMed DOI PMC
Foster J, et al. The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode. PLoS Biol. 2005;3:e121. doi: 10.1371/journal.pbio.0030121. PubMed DOI PMC
Taylor M, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of filarial nematodes. Adv. Parasitol. 2005;60:245–284. doi: 10.1016/S0065-308X(05)60004-8. PubMed DOI
Ferri E, et al. New Insights into the Evolution of Wolbachia Infections in Filarial Nematodes Inferred from a Large Range of Screened Species. PLoS ONE. 2011;6:e20843. doi: 10.1371/journal.pone.0020843. PubMed DOI PMC
Comandatore F, et al. Phylogenomics and analysis of shared genes suggest a single transition to mutualism in Wolbachia of nematodes. Genome Biol. Evol. 2013;5:1668–1674. doi: 10.1093/gbe/evt125. PubMed DOI PMC
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia? – a statistical analysis of current data: Wolbachia infection rates. FEMS Microbiol. Lett. 2008;281:215–220. doi: 10.1111/j.1574-6968.2008.01110.x. PubMed DOI PMC
Zug R, Hammerstein P. Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected. PLoS ONE. 2012;7:e38544. doi: 10.1371/journal.pone.0038544. PubMed DOI PMC
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008;6:741–751. doi: 10.1038/nrmicro1969. PubMed DOI
Valette V, et al. Multi-Infections of Feminizing Wolbachia Strains in Natural Populations of the Terrestrial Isopod Armadillidium Vulgare. PLoS ONE. 2013;8:e82633. doi: 10.1371/journal.pone.0082633. PubMed DOI PMC
Boivin T, et al. Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: host plant specialization matters. Mol. Ecol. 2014;23:2362–2375. doi: 10.1111/mec.12737. PubMed DOI
Fast EM, et al. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science. 2011;334:990–992. doi: 10.1126/science.1209609. PubMed DOI PMC
Dedeine F, et al. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. 2001;98:6247–6252. doi: 10.1073/pnas.101304298. PubMed DOI PMC
Kageyama D, Traut W. Opposite sex–specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc. R. Soc. Lond. B Biol. Sci. 2004;271:251–258. doi: 10.1098/rspb.2003.2604. PubMed DOI PMC
Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nansonia species complex. Evolution. 2009;63:165–183. doi: 10.1111/j.1558-5646.2008.00533.x. PubMed DOI
Heath BD, Butcher RD, Whitfield WG, Hubbard SF. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr. Biol. 1999;9:313–316. doi: 10.1016/S0960-9822(99)80139-0. PubMed DOI
Cordaux R, Michel-Salzat A, Bouchon D. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J. Evol. Biol. 2001;14:237–243. doi: 10.1046/j.1420-9101.2001.00279.x. DOI
Stahlhut JK, et al. The mushroom habitat as an ecological arena for global exchange of Wolbachia. Mol. Ecol. 2010;19:1940–1952. doi: 10.1111/j.1365-294X.2010.04572.x. PubMed DOI
Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. PNAS. 2010;107:769–774. doi: 10.1073/pnas.0911476107. PubMed DOI PMC
Sakamoto JM, Rasgon JL. Geographic distribution of Wolbachia infections in Cimex lectularius (Heteroptera: Cimicidae) J. Med. Entomol. 2006;43:696–700. doi: 10.1093/jmedent/43.4.696. PubMed DOI
Nikoh N, et al. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc. Natl. Acad. Sci. 2014;111:10257–10262. doi: 10.1073/pnas.1409284111. PubMed DOI PMC
Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host. mBio. 2015;6:e01732–15. doi: 10.1128/mBio.01732-15. PubMed DOI PMC
Usinger, R. L.
Balvín O, Roth S, Vilímová J. Molecular evidence places the swallow bug genus Oeciacus Stål within the bat and bed bug genus Cimex Linnaeus (Heteroptera: Cimicidae) Syst. Entomol. 2015;40:652–665. doi: 10.1111/syen.12127. DOI
Ueshima ND. host relationships and speciation of the genus Paracimex (Cimicidae: Hemiptera) Mushi. 1968;42:15–27.
Baldo L, et al. Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 2006;72:7098–7110. doi: 10.1128/AEM.00731-06. PubMed DOI PMC
Katoh K, Asimenos G, Toh H. Multiple Alignment of DNA Sequences with MAFFT. Methods Mol. Biol. 2009;537:39–64. doi: 10.1007/978-1-59745-251-9_3. PubMed DOI
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Ronquist F, Huelsenbeck JP. MR BAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
de Vienne DM, Giraud T, Martin OC. A congruence index for testing topological similarity between trees. Bioinformatics. 2007;23:3119–3124. doi: 10.1093/bioinformatics/btm500. PubMed DOI
Charleston MA, Robertson DL, Sanderson M. Preferential Host Switching by Primate Lentiviruses Can Account for Phylogenetic Similarity with the Primate Phylogeny. Syst. Biol. 2002;51:528–535. doi: 10.1080/10635150290069940. PubMed DOI
Baum BR. PHYLIP: Phylogeny Inference Package. Version 3.2. Joel Felsenstein. Q. Rev. Biol. 1989;64:539–541. doi: 10.1086/416571. DOI
Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees.
Boc A, Diallo AB, Makarenkov V. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012;40:W573–W579. doi: 10.1093/nar/gks485. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. Molecular Evolutionary Genetics Analysis version 7.0. Mol. Biol. Evol. 2015;33:1870–4. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Yang Z. PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000;17:32–43. doi: 10.1093/oxfordjournals.molbev.a026236. PubMed DOI
Tagami Y, Miura K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Biol. 2004;13:359–364. doi: 10.1111/j.0962-1075.2004.00492.x. PubMed DOI
Ahmed, M. Z., Araujo-Jnr, E. V., Welch, J. J. & Kawahara, A. Y. PubMed PMC
Riegler M, Stauffer C. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae) Mol. Ecol. 2002;11:2425–2434. doi: 10.1046/j.1365-294X.2002.01614.x. PubMed DOI
Schuler H, et al. The hitchhiker’s guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 2016;25:1595–1609. doi: 10.1111/mec.13571. PubMed DOI PMC
Lefoulon E, et al. A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup. Int. J. Parasitol. 2012;42:1025–1036. doi: 10.1016/j.ijpara.2012.09.004. PubMed DOI