Dynamic but constrained: repeated acquisitions of nutritional symbionts in bed bugs (Heteroptera: Cimicidae) from a narrow taxonomic pool
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10943S
Grantová Agentura České Republiky
PubMed
41211985
PubMed Central
PMC12710357
DOI
10.1128/msystems.01247-25
Knihovny.cz E-zdroje
- Klíčová slova
- bed bugs, coevolution, genomics, microbiome, symbiosis,
- MeSH
- Bacteria * genetika klasifikace MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- štěnice * mikrobiologie MeSH
- symbióza * MeSH
- Wolbachia genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bed bugs (Heteroptera: Cimicidae) harbor obligate bacterial symbionts that supplement their blood diet with missing nutrients, especially B vitamins. The primary symbiont, transovarially transmitted Wolbachia, is notable for a horizontally acquired biotin operon. Additional maternally inherited bacteria, including Symbiopectobacterium and Tisiphia, have been detected but are considered facultative and nonessential. However, nearly all current knowledge is derived from the human-associated Cimex lectularius, leaving symbiont diversity across more than 100 bed bug species largely unknown. Using amplicon and metagenomic data, we identified Wolbachia, Symbiopectobacterium, Sodalis, Serratia, and Tisiphia as candidate symbionts, with at least 16 independent acquisition events across the cimicid species, sometimes involving multiple strains per host. Phylogenetic comparisons indicated that some of these origins were followed by cospeciation. Wolbachia was present in most hosts except Cacodminae, where Symbiopectobacterium occurred as the sole symbiont, suggesting its obligate role. Analysis of 23 draft genomes revealed heterogeneity in size and gene content, consistent with varying stages of symbiotic reduction. Most lineages lost many biosynthetic pathways; only riboflavin and lipoic acid synthesis remained universally conserved. Our survey reveals a dynamic evolution of bed bug symbioses, with repeated symbiont acquisitions, cospeciation, and frequent coinfections. Despite independent origins, most symbionts belong to Wolbachia, Symbiopectobacterium, or Sodalis, implying unknown mechanisms shaping host specificity. Two points merit further study. First, Symbiopectobacterium as the sole obligate symbiont in Cacodminae suggests broader sampling may uncover greater symbiotic diversity. Second, uncertainties in biotin synthesis function call for deeper investigation into the evolution of this pathway in symbiotic bacteria.IMPORTANCEBed bugs are obligate blood-feeding insects that depend on bacterial partners to supply nutrients missing from their diet. Most previous research has focused on the human-associated species Cimex lectularius, leaving little known about symbiont diversity across other species. By surveying a broad phylogenetic range, we found that bed bugs have repeatedly acquired different bacteria as symbionts, including lineages not previously recognized as essential. Notably, finding Symbiopectobacterium as the sole symbiont in one subfamily shows that the nutritional partnerships in bed bugs are more dynamic than previously thought. At the same time, the majority of the 16 independent acquisitions involve only four bacterial genera, suggesting efficient mechanisms that constrain and shape bed bug-symbiont specificity.
Zobrazit více v PubMed
Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Edited by Berenbaum M. R.. Annu Rev Entomol 60:17–34. doi: 10.1146/annurev-ento-010814-020822 PubMed DOI PMC
Moran NA, Baumann P. 2000. Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275. doi: 10.1016/s1369-5274(00)00088-6 PubMed DOI
Sudakaran S, Kost C, Kaltenpoth M. 2017. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25:375–390. doi: 10.1016/j.tim.2017.02.014 PubMed DOI
McCutcheon JP, Boyd BM, Dale C. 2019. The life of an insect endosymbiont from the cradle to the grave. Curr Biol 29:R485–R495. doi: 10.1016/j.cub.2019.03.032 PubMed DOI
Duron O, Gottlieb Y. 2020. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol 36:816–825. doi: 10.1016/j.pt.2020.07.007 PubMed DOI
Rio R, Attardo G, Weiss B. 2016. Grandeur alliances: symbiont metabolic integration and oblicate arthopod hematophagy. Trends Parasitol 32:739–749. doi: 10.1016/j.pt.2016.05.002 PubMed DOI PMC
Reinhardt K, Siva-Jothy MT. 2007. Biology of the bed bugs (Cimicidae). Annu Rev Entomol 52:351–374. doi: 10.1146/annurev.ento.52.040306.133913 PubMed DOI
Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi: 10.1038/nrmicro1969 PubMed DOI
Rasgon JL, Scott TW. 2004. Phylogenetic characterization of Wolbachia symbionts infecting Cimex lectularius L. and Oeciacus vicarius Horvath (Hemiptera: Cimicidae). J Med Entomol 41:1175–1178. doi: 10.1603/0022-2585-41.6.1175 PubMed DOI
Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774. doi: 10.1073/pnas.0911476107 PubMed DOI PMC
Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. 2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA 111:10257–10262. doi: 10.1073/pnas.1409284111 PubMed DOI PMC
Hickin ML, Kakumanu ML, Schal C. 2022. Effects of Wolbachia elimination and B-vitamin supplementation on bed bug development and reproduction. Sci Rep 12:10270. doi: 10.1038/s41598-022-14505-2 PubMed DOI PMC
Poulain M, Rosinski E, Henri H, Balmand S, Delignette-Muller M-L, Heddi A, Lasseur R, Vavre F, Zaidman-Rémy A, Kremer N. 2024. Development, feeding, and sex shape the relative quantity of the nutritional obligatory symbiont Wolbachia in bed bugs. Front Microbiol 15. doi: 10.3389/fmicb.2024.1386458 PubMed DOI PMC
Hypša V, Aksoy S. 1997. Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Heteroptera:Cimicidae). Insect Mol Biol 6:301–304. doi: 10.1046/j.1365-2583.1997.00178.x PubMed DOI
Nadal-Jimenez P, Siozios S, Halliday N, Cámara M, Hurst GDD. 2022. Symbiopectobacterium purcellii, gen. nov., sp. nov., isolated from the leafhopper Empoasca decipiens. Int J Syst Evol Microbiol 72. doi: 10.1099/ijsem.0.005440 PubMed DOI
Thongprem P, Evison SEF, Hurst GDD, Otti O. 2020. Transmission, tropism, and biological impacts of torix Rickettsia in the common bed bug Cimex lectularius (Hemiptera: Cimicidae). Front Microbiol 11:608763. doi: 10.3389/fmicb.2020.608763 PubMed DOI PMC
Cagatay NS, Akhoundi M, Izri A, Brun S, Hurst GDD. 2025. Prevalence of heritable symbionts in parisian bedbugs (Hemiptera: Cimicidae). Environ Microbiol Rep 17:e70054. doi: 10.1111/1758-2229.70054 PubMed DOI PMC
Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. 2015. Riboflavin provisioning underlies wolbachia’s fitness contribution to its insect host. mBio 6:e01732-15. doi: 10.1128/mBio.01732-15 PubMed DOI PMC
Balvín O, Roth S, Talbot B, Reinhardt K. 2018. Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci Rep 8:8797. doi: 10.1038/s41598-018-25545-y PubMed DOI PMC
Sakamoto JM, Feinstein J, Rasgon JL. 2006. Wolbachia infections in the Cimicidae: museum specimens as an untapped resource for endosymbiont surveys. Appl Environ Microbiol 72:3161–3167. doi: 10.1128/AEM.72.5.3161-3167.2006 PubMed DOI PMC
Benoit JB, Adelman ZN, Reinhardt K, Dolan A, Poelchau M, Jennings EC, Szuter EM, Hagan RW, Gujar H, Shukla JN, et al. 2016. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat Commun 7:10165. doi: 10.1038/ncomms10165 PubMed DOI PMC
Husník F, McCutcheon JP. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA 113:E5416–24. doi: 10.1073/pnas.1603910113 PubMed DOI PMC
Říhová J, Batani G, Rodríguez-Ruano SM, Martinů J, Vácha F, Nováková E, Hypša V. 2021. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol Ecol 30:2178–2196. doi: 10.1111/mec.15866 PubMed DOI
Šochové E, Husník F, Nováková E, Halajian A, Hypša V. 2017. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5:e4099. doi: 10.7717/peerj.4099 PubMed DOI PMC
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. 2014. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 6:76–93. doi: 10.1093/gbe/evt210 PubMed DOI PMC
Roth S, Balvín O, Siva-Jothy MT, Di Iorio O, Benda P, Calva O, Faundez EI, Anwarali Khan FA, McFadzen M, Lehnert MP, Naylor R, Simov N, Morrow EH, Willassen E, Reinhardt K. 2019. Bedbugs evolved before their bat hosts and did not co-speciate with ancient humans. Curr Biol 29:1847–1853. doi: 10.1016/j.cub.2019.04.048 PubMed DOI
Alickovic L, Johnson KP, Boyd BM. 2021. The reduced genome of a heritable symbiont from an ectoparasitic feather feeding louse. BMC Ecol Evol 21:108. doi: 10.1186/s12862-021-01840-7 PubMed DOI PMC
Rio RVM, Symula RE, Wang J, Lohs CWu Y, Snyder AK, Bjornson RD, Oshima K, Biehl BS, Perna NT, Hattori M, Aksoy S. 2012. Insight into the transmission biology and species-specific functional capabilities of tsetse. mBio 3. doi: 10.1128/mBio.00240-11 PubMed DOI PMC
Santos-Garcia D, Morel O, Henri H, El Filali A, Buysse M, Noël V, McCoy KD, Gottlieb Y, Klasson L, Zenner L, Duron O, Vavre F. 2023. Genomic changes during the evolution of the Coxiella genus along the parasitism-mutualism continuum. Peer Community Journal 3. doi: 10.24072/pcjournal.269 DOI
Koga R, Moriyama M, Nozaki T, Fukatsu T. 2023. Genome analysis of “Candidatus Aschnera chinzeii,” the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae). Front Microbiol 14:1336919. doi: 10.3389/fmicb.2023.1336919 PubMed DOI PMC
Martin Říhová Jana, Gupta S, Darby AC, Nováková E, Hypša V. 2023. Arsenophonus symbiosis with louse flies: multiple origins, coevolutionary dynamics, and metabolic significance. mSystems 8:e0070623. doi: 10.1128/msystems.00706-23 PubMed DOI PMC
Martin Říhová J, Vodička R, Hypša V. 2025. An obligate symbiont of Haematomyzus elephantis with a strongly reduced genome resembles symbiotic bacteria in sucking lice. Appl Environ Microbiol 91:e0022025. doi: 10.1128/aem.00220-25 PubMed DOI PMC
Říhová J, Nováková E, Husník F, Hypša V. 2017. Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse polyplax serrata. Genome Biol Evol 9:2946–2957. doi: 10.1093/gbe/evx217 PubMed DOI PMC
Szentiványi T, Hornok S, Kovács ÁB, Takács N, Gyuranecz M, Markotter W, Christe P, Glaizot O. 2022. Polyctenidae (Hemiptera: Cimicoidea) species in the Afrotropical region: distribution, host specificity, and first insights to their molecular phylogeny. Ecol Evol 12:e9357. doi: 10.1002/ece3.9357 PubMed DOI PMC
Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi: 10.1038/nmeth.2604 PubMed DOI
Liu C, Cui Y, Li X, Yao M. 2021. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:fiaa255. doi: 10.1093/femsec/fiaa255 PubMed DOI
Ito K, Murphy D. 2013. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol 2:e79. doi: 10.1038/psp.2013.56 PubMed DOI PMC
Bolger A, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi: 10.1093/bioinformatics/btv421 PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153 PubMed DOI
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. doi: 10.1186/s13059-019-1832-y PubMed DOI PMC
Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. doi: 10.1007/s10482-017-0844-4 PubMed DOI
Wishart DS, Han S, Saha S, Oler E, Peters H, Grant JR, Stothard P, Gautam V. 2023. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res 51:W443–W450. doi: 10.1093/nar/gkad382 PubMed DOI PMC
Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. 2022. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol 39:msac153. doi: 10.1093/molbev/msac153 PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. doi: 10.1093/bioinformatics/btv351 PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi: 10.1080/10635150701472164 PubMed DOI
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 62:611–615. doi: 10.1093/sysbio/syt022 PubMed DOI
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–5. doi: 10.1093/nar/gkw256 PubMed DOI PMC
Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. doi: 10.1093/nar/gkab301 PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. doi: 10.1093/nar/gkv1070 PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi: 10.1016/j.jmb.2015.11.006 PubMed DOI