Towards unravelling Wolbachia global exchange: a contribution from the Bicyclus and Mylothris butterflies in the Afrotropics
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
790531
H2020 Marie Skłodowska-Curie Actions
1328944
Academy of Finland
UNCE204069
Charles University
PRIMUS/17/SCI/8
Charles University
Waitt Grant W163-11
National Geographic Society
2015-04441
Swedish Research Council
PubMed
33081703
PubMed Central
PMC7576836
DOI
10.1186/s12866-020-02011-2
PII: 10.1186/s12866-020-02011-2
Knihovny.cz E-zdroje
- Klíčová slova
- Horizontal transfer, Interspecific interactions, Lepidoptera, Phylogeny, Symbiosis, Vertical transmission,
- MeSH
- biodiverzita MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- Lepidoptera genetika fyziologie MeSH
- přenos genů horizontální * MeSH
- symbióza * MeSH
- Wolbachia genetika fyziologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
BACKGROUND: Phylogenetically closely related strains of maternally inherited endosymbiotic bacteria are often found in phylogenetically divergent, and geographically distant insect host species. The interspecies transfer of the symbiont Wolbachia has been thought to have occurred repeatedly, facilitating its observed global pandemic. Few ecological interactions have been proposed as potential routes for the horizontal transfer of Wolbachia within natural insect communities. These routes are however likely to act only at the local scale, but how they may support the global distribution of some Wolbachia strains remains unclear. RESULTS: Here, we characterize the Wolbachia diversity in butterflies from the tropical forest regions of central Africa to discuss transfer at both local and global scales. We show that numerous species from both the Mylothris (family Pieridae) and Bicyclus (family Nymphalidae) butterfly genera are infected with similar Wolbachia strains, despite only minor interclade contacts across the life cycles of the species within their partially overlapping ecological niches. The phylogenetic distance and differences in resource use between these genera rule out the role of ancestry, hybridization, and shared host-plants in the interspecies transfer of the symbiont. Furthermore, we could not identify any shared ecological factors to explain the presence of the strains in other arthropod species from other habitats, or even ecoregions. CONCLUSION: Only the systematic surveys of the Wolbachia strains from entire species communities may offer the material currently lacking for understanding how Wolbachia may transfer between highly different and unrelated hosts, as well as across environmental scales.
Department of Biology Lund University Lund Sweden
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Organismal and Evolutionary Biology Research Programme The University of Helsinki Helsinki Finland
Overstrand Mansions Prince of Wales Drive London SW11 4EU UK
Zobrazit více v PubMed
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett. 2008;281(2):215–220. doi: 10.1111/j.1574-6968.2008.01110.x. PubMed DOI PMC
Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One. 2012;7(6):e38544. doi: 10.1371/journal.pone.0038544. PubMed DOI PMC
Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci. 2015;282(1807):20150249. doi: 10.1098/rspb.2015.0249. PubMed DOI PMC
Raychoudhury R, Baldo L, Oliveira DC, Werren JH. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution. 2009;63(1):165–183. doi: 10.1111/j.1558-5646.2008.00533.x. PubMed DOI
Bordenstein SR, Paraskevopoulos C, Dunning Hotopp JC, Sapountzis P, Lo N, Bandi C, et al. Parasitism and mutualism in Wolbachia: what the phylogenomic trees can and cannot say. Mol Biol Evol. 2009;26(1):231–241. doi: 10.1093/molbev/msn243. PubMed DOI PMC
Balvin O, Roth S, Talbot B, Reinhardt K. Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci Rep. 2018;8(1):8797. doi: 10.1038/s41598-018-25545-y. PubMed DOI PMC
Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol. 1999;16(12):1711–1723. doi: 10.1093/oxfordjournals.molbev.a026084. PubMed DOI
Shoemaker DD, Machado CA, Molbo D, Werren JH, Windsor DM, Herre EA. The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc Biol Sci. 2002;269(1506):2257–2267. doi: 10.1098/rspb.2002.2100. PubMed DOI PMC
Ahmed MZ, Breinholt JW, Kawahara AY. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol Biol. 2016;16(1):118. doi: 10.1186/s12862-016-0660-x. PubMed DOI PMC
Johannesen J. Tracing the history and ecological context of Wolbachia double infection in a specialist host (Urophora cardui)-parasitoid (Eurytoma serratulae) system. Ecol Evol. 2017;7(3):986–996. doi: 10.1002/ece3.2713. PubMed DOI PMC
Miraldo A, Duplouy A. High Wolbachia strain diversity in a clade of dung beetles endemic to Madagascar. Front Ecol Evol. 2019;7. 10.3389/fevo.2019.00157.
Gaunet A, Dincã V, Dapporto L, Matagud S, Vodã R, Schär S, et al. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae) Zoologica Scripta. 2019;48(4):507–519. doi: 10.1111/zsc.12355. DOI
Jiggins FM. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003;164(1):5–12. PubMed PMC
Stahlhut JK, Desjardins CA, Clark ME, Baldo L, Russell JA, Werren JH, et al. The mushroom habitat as an ecological arena for global exchange of Wolbachia. Mol Ecol. 2010;19(9):1940–1952. doi: 10.1111/j.1365-294X.2010.04572.x. PubMed DOI
Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol. 2006;51(3):294–301. doi: 10.1007/s00248-006-9036-x. PubMed DOI
Werren JH, O’Neill SL. The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH, editors. Influential passengers. Oxford: Oxford University Press; 1998. pp. 1–41.
Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM, et al. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog. 2015;10(2):e1004672. doi: 10.1371/journal.ppat.1004672. PubMed DOI PMC
Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol. 2006;72(11):7098–7110. doi: 10.1128/AEM.00731-06. PubMed DOI PMC
Shaikevich E, Bogacheva A, Rakova V, Ganushkina L, Ilinsky Y. Wolbachia symbionts in mosquitoes: Intra- and intersupergroup recombinations, horizontal transmission and evolution. Mol Phylogenet Evol. 2019;134:24–34. doi: 10.1016/j.ympev.2019.01.020. PubMed DOI
Chazot N, Wahlberg N, Freitas AVL, Mitter C, Labandeira C, Sohn JC, et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst Biol. 2019;68(5):797–813. doi: 10.1093/sysbio/syz002. PubMed DOI PMC
Carcasson RH. A preliminary survey of the zoogeography of African butterflies. East Afr Wildlife J. 1964:e:122–57. 10.1111/j.1365-2028.1964.tb00203.x.
Warren-Gash H, Aduse-Poku K, Murillo-Ramos L, Wahlberg N. Systematics and evolution of the African butterfly genus Mylothris (Lepidoptera, Pieridae) Nota Lepidopterologica. 2020;43:1–14. doi: 10.3897/nl.43.46354. DOI
Seitz A. Die gross schmetterlinge der erde: eine systematishe bearbeitung des bis jetzt bekannten gross schmetterlinge. Stuttgart: Verlag des Seitzschen Werkes (Alfred Kernen); 1907.
Picker M, Griffiths C, Weaving A. Field guide to insects of South Africa. New Holland Books (US), 2003. ISBN 9781868727131.
Mendes LF. Bivar de Sousa a. description of a new species of Mylothris from northern Angola (Lepidoptera: Pieridae) Bollettino della Soc Entomol Ital. 2009;141(1):55–58.
Larsen TB. Butterflies of West Africa. Strenstrup: Apollo Books; 2005.
Tropek R, Konvicka M. Forest eternal? Endemic butterflies of the Bamenda highlands, Cameroon, avoid close-canopy forest. Afr J Ecol. 2010;48(2):428–437. doi: 10.1111/j.1365-2028.2009.01129.x. DOI
Braby MF, Trueman JW. Evolution of larval host plant associations and adaptive radiation in pierid butterflies. J Evol Biol. 2006;19(5):1677–1690. doi: 10.1111/j.1420-9101.2006.01109.x. PubMed DOI
Braby MF. Afrotropical mistletoe butterflies: larval food plant relationships of Mylothris Hubner (Lepidoptera : Pieridae) J Nat Hist. 2005;39(6):499–513. doi: 10.1080/00222930410001708687. DOI
Claassens AJM, Dickson CGC. Mylothris chloris agathina (Cramer) (Lepidoptera: Pieridae), a species which has extended its range of distribution from the easterly part of South Africa to the extreme Western cape. Entomologist's Rec J Variation. 1986;98:1–4.
Nokelainen O, Ripley BS, van Bergen E, Osborne CP, Brakefield PM. Preference for C4 shade grasses increases hatchling performance in the butterfly, Bicyclus safitza. Ecol Evol. 2016;6(15):5246–5255. doi: 10.1002/ece3.2235. PubMed DOI PMC
Pena C, Wahlberg N. Prehistorical climate change increased diversification of a group of butterflies. Biol Lett. 2008;4(3):274–278. doi: 10.1098/rsbl.2008.0062. PubMed DOI PMC
Maicher V, Safian S, Murkwe M, Przybylowicz L, Janecek S, Fokam EB, et al. Flying between raindrops: strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecol Evol. 2018;8(24):12761–12772. doi: 10.1002/ece3.4704. PubMed DOI PMC
Maicher V, Sáfián S, Murkwe M, Delabye S, Przybyłowicz L, Potocký P, et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J Biogeogr. 2019;47(2):342–354. doi: 10.1111/jbi.13740. DOI
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ. 2018;6:e4629. doi: 10.7717/peerj.4629. PubMed DOI PMC
Russell JA, Funaro CF, Giraldo YM, Goldman-Huertas B, Suh D, Kronauer DJ, et al. A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: broad molecular surveys and a systematic review. PLoS One. 2012;7(12):e51027. doi: 10.1371/journal.pone.0051027. PubMed DOI PMC
Poulton EB. Proceedings of the Royal Entomological Society of London Series. 1928. An all-female family of Mylothris spica, Moschl. Reared by Miss M.E. Fountaine from a company of larvae at Buea (about 3000 ft.) in the Cameroons; p. 75.
Dyson EA, Hurst GD. Persistence of an extreme sex-ratio bias in a natural population. Proc Natl Acad Sci U S A. 2004;101(17):6520–6523. doi: 10.1073/pnas.0304068101. PubMed DOI PMC
Duplouy A, Brattstrom O. Wolbachia in the genus Bicyclus: a forgotten player. Microb Ecol. 2018;75(1):255–263. doi: 10.1007/s00248-017-1024-9. PubMed DOI PMC
Ilinsky Y, Kosterin OE. Molecular diversity of Wolbachia in Lepidoptera: prevalent allelic content and high recombination of MLST genes. Mol Phylogenet Evol. 2017;109:164–179. doi: 10.1016/j.ympev.2016.12.034. PubMed DOI
Aduse-Poku K, Brakefield PM, Wahlberg N, Brattström O. Expanded molecular phylogeny of the genus Bicyclus (Lepidoptera: Nymphalidae) shows the importance of increased sampling for detecting semi-cryptic species and highlights potentials for future studies. Syst Biodivers. 2016;15(2):215–130. doi: 10.1080/14772000.2016.1226979. DOI
Ackery D. Host plant untilization by African and Australian butterflies. Biol J Linn Soc. 1991;44:335–351. doi: 10.1111/j.1095-8312.1991.tb00624.x. DOI
Gupta A, Shaw M, Cardinal S, Fernandez-Triana J. A review of unusual species of Cotesia (Hymenoptera, Braconidae, Microgastrinae) with the first tergite narrowing at midlength. Zookeys. 2016;580:29–44. doi: 10.3897/zookeys.580.8090. PubMed DOI PMC
Wu SF, Sun FD, Qi YX, Yao Y, Fang Q, Huang J, et al. Parasitization by Cotesia chilonis influences gene expression in fatbody and hemocytes of Chilo suppressalis. PLoS One. 2013;8(9):e74309. doi: 10.1371/journal.pone.0074309. PubMed DOI PMC
Fox EGP, Bressan-Nascimento S. Biological characteristics of Evania appendigaster (L.) (Hymenoptera: Evaniidae) in different densities of Periplaneta americana (L.) oothecae (Blattodea: Blattidae) Biol Control. 2006;36(2):183–188. doi: 10.1016/j.biocontrol.2005.09.006. DOI
Van Borm S, Wenseleers T, Billen J, Boomsma JJ. Cloning and sequencing of wsp encoding gene fragments reveals a diversity of co-infecting Wolbachia strains in Acromyrmex leafcutter ants. Mol Phylogenet Evol. 2003;26(1):102–109. doi: 10.1016/s1055-7903(02)00298-1. PubMed DOI
Rasgon JL, Gamston CE, Ren X. Survival of Wolbachia pipientis in cell-free medium. Appl Environ Microbiol. 2006;72(11):6934–6937. doi: 10.1128/AEM.01673-06. PubMed DOI PMC
Yapo ML, Tuo Y, Kone M, Kouassi P. Diversity of butterflies visitors of cashew (Anacardium occidentale L.) flowers in Korhogo (Northern Côte d’ivoire) Int J Entomol Res. 2018;3(3):7–10.
Kudom AA, Kofi KP. Floral visitors of Ananas comosus in Ghana: a preliminary assessment. J Pollination Ecol. 2010;2(5):27–32. doi: 10.26786/1920-7603(2010)4. DOI
Gerth M, Gansauge MT, Weigert A, Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat Commun. 2014;5:5117. doi: 10.1038/ncomms6117. PubMed DOI
Bailly-Bechet M, Martins-Simoes P, Szollosi GJ, Mialdea G, Sagot MF, Charlat S. How long does Wolbachia remain on board? Mol Biol Evol. 2017;34(5):1183–1193. doi: 10.1093/molbev/msx073. PubMed DOI
Saridaki A, Bourtzis K. Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol. 2010;13(1):67–72. doi: 10.1016/j.mib.2009.11.005. PubMed DOI
Detcharoen M, Arthofer W, Schlick-Steiner BC, Steiner FM. Wolbachia megadiversity: 99% of these microorganismic manipulators unknown. FEMS Microbiol Ecol. 2019;95(11). 10.1093/femsec/fiz151. PubMed
Bleidorn C, Gerth M. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol. 2018;94(1). 10.1093/femsec/fix163. PubMed
Gerth M, Bleidorn C. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol. 2016;2:16241. doi: 10.1038/nmicrobiol.2016.241. PubMed DOI
LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature. 2017;543(7644):243–247. doi: 10.1038/nature21391. PubMed DOI PMC
O’Neill SL, Giordano R, Colbert AME, Karr TL. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci. 1992;89:2699–2702. doi: 10.1073/pnas.89.7.2699. PubMed DOI PMC
Rousset F, Bouchon D, Pintureau B, Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992;250(1328):91–98. doi: 10.1098/rspb.1992.0135. PubMed DOI
Olson DM, Dinerstein E, Wikramanayake E, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial ecoregions of the world: a new map of life on earth. BioScience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Olson DM, Dinerstein E. The global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conserv Biol. 1998;12:502–515. doi: 10.1046/j.1523-1739.1998.012003502.x. DOI
Halali S, Brakefield PM, Collins SC, Brattstrom O. To mate, or not to mate: the evolution of reproductive diapause facilitates insect radiation into African savannahs in the Late Miocene. J Anim Ecol. 2020;89(5):1230–1241. doi: 10.1111/1365-2656.13178. PubMed DOI
Zhou W, Rousset F, O'Neil S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998;265(1395):509–515. doi: 10.1098/rspb.1998.0324. PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans: 2010. p. 1–8. 10.1109/GCE.2010.5676129.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W2W9. doi: 10.1093/nar/gkz239. PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–128. doi: 10.1093/bioinformatics/btl529. PubMed DOI