Flying between raindrops: Strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30619580
PubMed Central
PMC6308855
DOI
10.1002/ece3.4704
PII: ECE34704
Knihovny.cz E-zdroje
- Klíčová slova
- Afrotropics, Lepidoptera, biodiversity patterns, multitaxa approach, phenology, seasonality,
- Publikační typ
- časopisecké články MeSH
Although seasonality in the tropics is often less pronounced than in temperate areas, tropical ecosystems show seasonal dynamics as well. Nevertheless, individual tropical insects' phenological patterns are still poorly understood, especially in the Afrotropics. To fill this gap, we investigated biodiversity patterns of Lepidoptera communities at three rainforest localities in the foothills of Mount Cameroon, West Africa, one of the wettest places in the world. Our multitaxa approach covered six lepidopteran groups (fruit-feeding butterflies and moths, the families Sphingidae, Saturniidae, and Eupterotidae, and the subfamily Arctiinae of Erebidae) with diverse life strategies. We sampled adults of the focal groups in three distinct seasons. Our sampling included standardized bait trapping (80 traps exposed for 10 days per locality and season) and attraction by light (six full nights per locality and season). Altogether, our dataset comprised 20,576 specimens belonging to 559 (morpho)species of the focal groups. The biodiversity of Lepidoptera generally increased in the high-dry season, and either increased (fruit-feeding moths, Arctiinae, Saturniidae) or decreased (butterflies, Sphingidae) in the transition to the wet season in particular groups. Simultaneously, we revealed a strong species turnover of fruit-feeding Lepidoptera and Arctiinae among the seasons, indicating relatively high specialization of these communities for particular seasons. Such temporal specialization can make the local communities of butterflies and moths especially sensitive to the expected seasonal perturbations caused by the global change. Because of the key role of Lepidoptera across trophic levels, such changes in their communities could strengthen this impact on entire tropical ecosystems.
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Zoology and Animal Physiology Faculty of Science University of Buea Buea Cameroon
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Botany Czech Academy of Sciences Trebon Czech Republic
Institute of Entomology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Institute of Systematics and Evolution of Animals Polish Academy of Sciences Krakow Poland
Institute of Zoology and Biomedical Research Jagiellonian University Krakow Poland
Nature Education Centre Jagiellonian University Krakow Poland
Zobrazit více v PubMed
Adamescu, G. S. , Plumptre, A. J. , Abernethy, K. A. , Polansky, L. , Bush, E. R. , Chapman, C. A. , … Beale, C. M. (2018). Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica, 50, 418–430. 10.1111/btp.12561 DOI
Aduse‐Poku, K. , William, O. , Oppong, S. K. , Larsen, T. , Ofori‐Boateng, C. , & Molleman, F. (2012). Spatial and temporal variation in butterfly biodiversity in a West African forest: Lessons for establishing efficient rapid monitoring programmes. African Journal of Ecology, 50, 326–334. 10.1111/j.1365-2028.2012.01328.x DOI
Axmacher, J. C. , Kühne, L. , & Vohland, K. (2008). Notes on α‐ and β‐diversity pattern of selected moth families In Kühne L. (Ed.), Butterflies and moth diversity of Kakamega forest (Kenya) (pp. 35–46). Potsdam, Germany: Brandenburgische Universitätsdruckerei und Verlagsgesellschaft.
Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143. 10.1111/j.1466-8238.2009.00490.x DOI
Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223–1232. 10.1111/j.1466-8238.2011.00756.x DOI
Baselga, A. , & Orme, C. D. L. (2012). betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808–812.
Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48.
Beck, J. , & Linsenmair, K. E. (2006). Feasibility of light‐trapping in community research on moths: Attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast‐Asian hawkmoths (Lepidoptera: Sphingidae). Journal of Research on the Lepidoptera, 39, 18–37.
Beck, J. , & Schwanghart, W. (2010). Comparing measures of species diversity from incomplete inventories: An update. Methods in Ecology and Evolution, 1, 38–44. 10.1111/j.2041-210X.2009.00003.x DOI
Chao, A. , Gotelli, N. J. , Hsieh, T. C. , Sander, E. L. , Ma, K. H. , Colwell, R. K. , … Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67. 10.1890/13-0133.1 DOI
Chao, A. , & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93, 2533–2547. 10.1890/11-1952.1 PubMed DOI
Chao, A. , Ma, K. H. , Hsieh, T. C. , & Chiu, C. H. (2016). SpadeR (Species‐richness Prediction And Diversity Estimation in R): An R package in CRAN. Program and user's guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/.
Checa, M. F. , Rodriguez, J. , Willmott, K. R. , & Liger, B. (2014). Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Florida Entomologist, 97, 1–13. 10.1653/024.097.0101 DOI
Cleland, E. E. , Chuine, I. , Menzel, A. , Mooney, H. A. , & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357–365. 10.1016/j.tree.2007.04.003 PubMed DOI
Cronin, D. T. , Libalah, M. B. , Bergl, R. A. , & Hearn, G. W. (2014). Biodiversity and conservation of tropical montane eco‐systems in the Gulf of Guinea, West Africa. Arctic, Antarctic, and Alpine Research, 46, 891–904. 10.1657/1938-4246-46.4.891 DOI
Cruz‐Neto, O. , Machado, I. C. , Duarte, J. A. , & Lopes, A. V. (2011). Synchronous phenology of hawkmoths (Sphingidae) and Inga species (Fabaceae–Mimosoideae): Implications for the restoration of the Atlantic forest of northeastern Brazil. Biodiversity and Conservation, 20, 751–765. 10.1007/s10531-010-9975-x DOI
DeVries, P. J. , Alexander, L. G. , Chacon, I. A. , & Fordyce, J. A. (2012). Similarity and difference among rainforest fruit‐feeding butterfly communities in Central and South America. Journal of Animal Ecology, 81, 472–482. 10.1111/j.1365-2656.2011.01922.x PubMed DOI
DeVries, P. J. , Murray, D. , & Lande, R. (1997). Species diversity in vertical, horizontal, and temporal dimensions of a fruit‐feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society, 62, 343–364. 10.1111/j.1095-8312.1997.tb01630.x DOI
DeVries, P. J. , & Walla, T. R. (2001). Species diversity and community structure in neotropical fruit‐feeding butterflies. Biological Journal of the Linnean Society, 74, 1–15. 10.1111/j.1095-8312.2001.tb01372.x DOI
Feng, X. , Porporato, A. , & Rodriguez‐Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3, 811–815. 10.1038/nclimate1907 DOI
Ferenc, M. , Fjeldså, J. , Sedláček, O. , Motombi, F. N. , Djomo Nana, E. , Mudrová, K. , … Hořák, D. (2016). Abundance‐area relationships in bird assemblages along an Afrotropical elevational gradient: Space limitation in montane forest selects for higher population densities. Oecologia, 181, 225–233. 10.1007/s00442-016-3554-0 PubMed DOI
Fiedler, K. , & Schulze, C. H. (2004). Forest modification affects diversity (but not dynamics) of speciose tropical pyraloid moth communities. Biotropica, 36, 615–627. 10.1111/j.1744-7429.2004.tb00355.x DOI
Freitas, A. V. L. , Iserhard, C. A. , Santos, J. P. , CarreiraI, J. Y. O. , Ribeiro, D. B. , Melo, D. H. A. , … Prado, M. U. (2014). Studies with butterfly bait traps: An overview. Revista Colombiana De Entomología, 40, 203–212.
Grøtan, V. , Lande, R. , Chacon, I. A. , & Devries, P. J. (2014). Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography, 37, 509–516. 10.1111/ecog.00635 DOI
Grøtan, V. , Lande, R. , Engen, S. , Sæther, B. E. , & DeVries, P. J. (2012). Seasonal cycles of species diversity and similarity in a tropical butterfly community. Journal of Animal Ecology, 81, 714–723. 10.1111/j.1365-2656.2011.01950.x PubMed DOI
Heppner, J. B. (1991). Faunal regions and the diversity of Lepidoptera. Tropical Lepidoptera, 2, 1–85.
Hill, J. K. , Hamer, K. C. , Dawood, M. M. , Tangah, J. , & Chey, V. K. (2003). Rainfall but not selective logging affect changes in abundance of tropical forest butterfly in Sabah, Borneo. Journal of Tropical Ecology, 19, 35–42.
Hilt, N. , Brehm, G. , Fiedler, K. (2007). Temporal dynamics of rich moth ensembles in the montane forest zone in Southern Ecuador. Biotropica, 39, 94–104. 10.1111/j.1744-7429.2006.00219.x DOI
Holyoak, M. , Jarosik, V. , & Novák, I. (1997). Weather‐induced changes in moth activity bias measurement of long‐term population dynamics from light trap samples. Entomologia Experimentalis Et Applicata, 83, 329–335. 10.1046/j.1570-7458.1997.00188.x DOI
Hsieh, T. C. , Ma, K. H. , & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456. 10.1111/2041-210X.12613 DOI
Intachat, J. , Holloway, J. D. J. D. , & Staines, H. (2001). Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. Journal of Tropical Ecology, 17, 411–429. 10.1017/S0266467401001286 DOI
Janzen, D. H. (1993). Caterpillar seasonality in a Costa Rican dry forest In Stamp N. E., & Casey T. M. (Eds.), Caterpillars – ecological and evolutionary constraints on foraging (pp. 448–477). New York, NY: Chapman & Hall.
Kishimoto‐Yamada, K. , & Itioka, T. (2015). How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomological Science, 18, 407–419. 10.1111/ens.12134 DOI
Larsen, T. B. , Riley, J. , & Cornes, M. A. (1979). The butterfly fauna of a secondary bush locality in Nigeria. Journal of Research on the Lepidoptera, 18, 4–23.
Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573–579.
Lefèvre, R. (1967). Aspect de la pluviométrie dans la région du Mont Cameroun. Cahiers ORSTOM. Série Hydrologie, 4, 15–44.
Lieberman, D. (1982). Seasonality and phenology in a dry tropical forest in Ghana. Journal of Ecology, 70, 791–806. 10.2307/2260105 DOI
Magurran, A. E. (2007). Species abundance distributions over time. Ecology Letters, 10, 347–354. 10.1111/j.1461-0248.2007.01024.x PubMed DOI
Maicher, V. , Sáfián, S. , Ishmeal, K. N. , Murkwe, M. , Kimbeng, T. J. , Janeček, Š. , … Tropek, R. (2016). Two genera and nineteen species of fruit‐feeding erebid moths (Lepidoptera: Erebidae) recorded in Cameroon for the first time. Entomological News, 126, 64–70. 10.3157/021.126.0108 DOI
Marcon, E. , & Hérault, B. (2015). entropart: An R package to measure and partition diversity. Journal of Statistical Software, 67, 1–26.
Molleman, F. , Kop, A. , Brakefield, P. M. , Vries, P. J. D. , & Zwaan, B. J. (2006). Vertical and temporal patterns of biodiversity of fruit‐feeding butterflies in a tropical forest in Uganda. Biodiversity and Conservation, 15, 107–121. 10.1007/s10531-004-3955-y DOI
Molleman, F. , Remmel, T. , & Sam, K. (2016). Phenology of predation on insects in a tropical forest: Temporal variation in attack rate on dummy caterpillars. Biotropica, 48, 229–236. 10.1111/btp.12268 DOI
Molua, E. L. , & Lambi, C. M. (2006). Climate, hydrology and water resources in Cameroon . The Centre for Environmental Economics and Policy in Africa (CEEPA). University of Pretoria, South Africa.
Namu, F. N. , Githaiga, J. M. , Kioko, E. N. , Ndegwa, P. N. , & Hauser, C. L. (2008). Butterfly species, composition, and abundance in an old, middle‐aged, and young secondary forest In Kühne L. (Ed.), Butterflies and moth diversity of Kakamega forest (Kenya) (pp. 47–61). Potsdam, Germany: Brandenburgische Universitätsdruckerei und Verlagsgesellschaft.
Niven, J. E. , & Scharlemann, J. P. W. (2005). Do insect metabolic rates at rest and during flight scale with body mass? Biology Letters, 1, 346–349. 10.1098/rsbl.2005.0311 PubMed DOI PMC
O'Hara, R. B. , & Kotze, D. J. (2010). Do not log‐transform count data. Methods in Ecology and Evolution, 1, 118–122. 10.1111/j.2041-210X.2010.00021.x DOI
Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , … Wagner, H. (2017). vegan: community ecology package . R package version 2.4‐2. Retrieved from <https://CRAN.R-project.org/package=vegan>, accessed 24th August 2017.
Owen, D. F. (1969). Species diversity and seasonal abundance in tropical Sphingidae (Lepidoptera). Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 44, 162–168.
Owen, D. F. , & Chanter, D. O. (1972). Species diversity and seasonal abundance in Charaxes butterflies (Nymphalidae). Physiological Entomology, 46(2), 135–143. 10.1111/j.1365-3032.1972.tb00119.x DOI
Proctor, J. , Edwards, I. D. , Payton, R. W. , & Nagy, L. (2007). Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecology, 192, 251–269. 10.1007/s11258-007-9326-5 DOI
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from https://www.R-project.org/
Ribeiro, D. B. , & Freitas, A. V. L. (2010). Differences in thermal responses in a fragmented landscape: Temperature affects the sampling of diurnal, but not nocturnal fruit‐feeding Lepidoptera. Journal of Research on the Lepidoptera, 2003, 1–4.
Ribeiro, D. B. , Prado, P. I. , Brown, K. S. , & Freitas, A. V. L. (2010). Temporal diversity patterns and phenology in fruit‐feeding butterflies in the Atlantic forest. Biotropica, 42, 710–716. 10.1111/j.1744-7429.2010.00648.x DOI
Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge, UK: Cambridge University Press.
Sáfián, S. , Csontos, G. , & Winkler, D. (2011). Butterfly community recovery in degraded rainforest habitats in the Upper Guinean forest zone (Kakum forest, Ghana). Journal of Insect Conservation, 15, 351–359. 10.1007/s10841-010-9343-x DOI
Schulze, C. H. , & Fiedler, K. (2003). Vertical and temporal diversity of a species rich moth taxon in Borneo In Basset Y., Novotný V., Miller S. E., & Kitching R. L. (Ed.), Arthropods of tropical forests: Spatio‐temporal dynamics and resource use in the canopy (pp. 69–88). Cambridge, UK: Cambridge University Press.
Schulze, C. H. , Linsenmair, K. E. , & Fiedler, K. (2001). Understorey versus canopy: Patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecology, 153, 133–152.
Šmilauer, P. , & Lepš, J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge, UK: Cambridge University Press.
Sun, C. , Kaplin, B. A. , Kristensen, K. A. , Munyaligoga, V. , Mvukiyumwami, J. , Kajondo, K. K. , … Moermond, T. C. (1996). Tree phenology in a tropical montane forest in Rwanda. Biotropica, 28, 668–681. 10.2307/2389053 DOI
terBraak, C. J. F. , & Šmilauer, P. (2012) Canoco 5, Windows release (5.00). Software for multivariate data exploration, testing, and summarization. Wageningen, The Netherlands: Biometrics, Plant Research International.
Tikoca, S. , Hodge, S. , Pene, S. , Clayton, J. , Tuiwawa, M. , & Brodie, G. (2016) Temporal variation in macro‐moth abundance and species richness in a lowland Fijian forest. Pacific Science, 70(4), 447–461. 10.2984/70.4.5 DOI
Ustjuzhanin, P. , Kovtunovich, V. , Sáfián, S. , Maicher, V. , & Tropek, R. (2018). A newly discovered biodiversity hotspot of many‐plumed moths (Lepidoptera, Alucitidae) in the Mount Cameroon area: First report on species diversity, with description of nine new species. ZooKeys, 777, 119–139. PubMed PMC
Valtonen, A. , Molleman, F. , Chapman, C. A. , Carey, J. R. , Ayres, M. P. , & Roininen, H. (2013). Tropical phenology: Bi‐annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere, 4, 1–28. 10.1890/ES12-00338.1 DOI
van Schaik, C. P. , Terborgh, J. W. , & Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24(1), 353–377. 10.1146/annurev.es.24.110193.002033 DOI
Wolda, H. (1988). Insect seasonality: Why? Annual Review of Ecology and Systematics, 19, 1–18. 10.1146/annurev.es.19.110188.000245 DOI
Wright, S. J. (1996). Phenological responses to seasonality in tropical forest plants In Smith A. P., Mulkey S. S., & Chazdon R. L. (Eds.), Tropical forest plant ecophysiology (pp. 440–460). New York, NY: Springer, Chapman & Hall.
Yakovlev, R. V. , & Sáfián, S. (2016). Geraldocossus gen. nov. (Lepidoptera, Cossidae) from Mount Cameroon (West Africa). Zootaxa, 4114, 595–599. PubMed
Dryad
10.5061/dryad.sc1dr77