Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum

. 2019 Jan ; 64 (1) : 33-39. [epub] 20180625

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29938299

Grantová podpora
CB-2008-01 105527 CONACyT
203440 CONACyT

Odkazy

PubMed 29938299
DOI 10.1007/s12223-018-0625-0
PII: 10.1007/s12223-018-0625-0
Knihovny.cz E-zdroje

Three different transformation strategies were tested and compared in an attempt to facilitate and improve the genetic transformation of Acremonium chrysogenum, the exclusive producer of the pharmaceutically relevant β-lactam antibiotic cephalosporin C. We investigated the use of high-voltage electric pulse to transform germinated conidia and young mycelium and compared these procedures with traditional PEG-mediated protoplast transformation, using phleomycin resistance as selection marker in all cases. The effect of the field strength and capacitance on transformation frequency and cell viability was evaluated. The electroporation of germinated conidia and young mycelium was found to be appropriate for transforming A. chrysogenum with higher transformation efficiencies than those obtained with the conventional protoplast-based transformation procedures. The developed electroporation strategy is fast, simple to perform, and highly reproducible and avoids the use of chemicals toxic to cells. Electroporation of young mycelium represents an alternative method for transformation of fungal strains with reduced or no sporulation, as often occurs in laboratory-developed strains in the search for high-yielding mutants for industrial bioprocesses.

Zobrazit více v PubMed

Biosci Biotechnol Biochem. 1994 Dec;58(12):2224-7 PubMed

Mycopathol Mycol Appl. 1974 Nov 29;54(3):369-75 PubMed

Gene. 1992 May 15;114(2):211-6 PubMed

Adv Biochem Eng Biotechnol. 2004;88:1-43 PubMed

J Microbiol. 2011 Jun;49(3):469-72 PubMed

BMC Res Notes. 2011 Mar 05;4:46 PubMed

Appl Environ Microbiol. 2008 Oct;74(19):6006-16 PubMed

Curr Genet. 1992 Nov;22(5):399-406 PubMed

Can J Microbiol. 1991 Nov;37(11):858-63 PubMed

Appl Environ Microbiol. 1998 Apr;64(4):1580-3 PubMed

Nucleic Acids Res. 1990 Nov 25;18(22):6737 PubMed

Phytopathology. 2001 Feb;91(2):173-80 PubMed

Curr Genet. 1987;12(5):337-48 PubMed

Appl Microbiol Biotechnol. 2003 Jun;61(5-6):385-92 PubMed

Appl Microbiol Biotechnol. 2010 Mar;86(1):51-62 PubMed

Curr Genet. 1993 Nov;24(5):421-7 PubMed

Mol Gen Genet. 1991 Jan;225(1):56-64 PubMed

Fungal Genet Biol. 2012 Feb;49(2):114-22 PubMed

Bioeng Bugs. 2010 Nov-Dec;1(6):395-403 PubMed

J Microbiol Biotechnol. 2013 May;23(5):674-80 PubMed

J Microbiol Methods. 2008 Feb;72(2):111-5 PubMed

Appl Environ Microbiol. 1989 Sep;55(9):2242-6 PubMed

Nat Rev Drug Discov. 2007 Jan;6(1):19-20 PubMed

Appl Environ Microbiol. 1995 Jan;61(1):352-6 PubMed

J Microbiol Methods. 2007 Jun;69(3):512-7 PubMed

BMC Microbiol. 2015 Feb 06;15:20 PubMed

Biotechnol Adv. 2013 Mar-Apr;31(2):287-311 PubMed

Appl Environ Microbiol. 2004 Feb;70(2):1031-9 PubMed

J Microbiol Methods. 2007 Sep;70(3):519-27 PubMed

Nat Biotechnol. 1998 Sep;16(9):839-42 PubMed

FEMS Microbiol Lett. 2004 Jun 1;235(1):43-9 PubMed

Curr Genet. 1999 Aug;36(1-2):98-104 PubMed

Yeast. 2001 Aug;18(11):1015-21 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...