Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum
Language English Country United States Media print-electronic
Document type Comparative Study, Journal Article
Grant support
CB-2008-01 105527
CONACyT
203440
CONACyT
PubMed
29938299
DOI
10.1007/s12223-018-0625-0
PII: 10.1007/s12223-018-0625-0
Knihovny.cz E-resources
- MeSH
- Acremonium drug effects genetics metabolism MeSH
- Drug Resistance, Bacterial MeSH
- Cephalosporins biosynthesis MeSH
- Electroporation methods MeSH
- Phleomycins pharmacology MeSH
- Microbial Viability MeSH
- Mycelium drug effects genetics metabolism MeSH
- Protoplasts physiology MeSH
- Spores, Fungal drug effects genetics metabolism MeSH
- Transformation, Genetic * MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Cephalosporins MeSH
- cephalosporin C MeSH Browser
- Phleomycins MeSH
Three different transformation strategies were tested and compared in an attempt to facilitate and improve the genetic transformation of Acremonium chrysogenum, the exclusive producer of the pharmaceutically relevant β-lactam antibiotic cephalosporin C. We investigated the use of high-voltage electric pulse to transform germinated conidia and young mycelium and compared these procedures with traditional PEG-mediated protoplast transformation, using phleomycin resistance as selection marker in all cases. The effect of the field strength and capacitance on transformation frequency and cell viability was evaluated. The electroporation of germinated conidia and young mycelium was found to be appropriate for transforming A. chrysogenum with higher transformation efficiencies than those obtained with the conventional protoplast-based transformation procedures. The developed electroporation strategy is fast, simple to perform, and highly reproducible and avoids the use of chemicals toxic to cells. Electroporation of young mycelium represents an alternative method for transformation of fungal strains with reduced or no sporulation, as often occurs in laboratory-developed strains in the search for high-yielding mutants for industrial bioprocesses.
See more in PubMed
Biosci Biotechnol Biochem. 1994 Dec;58(12):2224-7 PubMed
Mycopathol Mycol Appl. 1974 Nov 29;54(3):369-75 PubMed
Gene. 1992 May 15;114(2):211-6 PubMed
Adv Biochem Eng Biotechnol. 2004;88:1-43 PubMed
J Microbiol. 2011 Jun;49(3):469-72 PubMed
BMC Res Notes. 2011 Mar 05;4:46 PubMed
Appl Environ Microbiol. 2008 Oct;74(19):6006-16 PubMed
Curr Genet. 1992 Nov;22(5):399-406 PubMed
Can J Microbiol. 1991 Nov;37(11):858-63 PubMed
Appl Environ Microbiol. 1998 Apr;64(4):1580-3 PubMed
Nucleic Acids Res. 1990 Nov 25;18(22):6737 PubMed
Phytopathology. 2001 Feb;91(2):173-80 PubMed
Curr Genet. 1987;12(5):337-48 PubMed
Appl Microbiol Biotechnol. 2003 Jun;61(5-6):385-92 PubMed
Appl Microbiol Biotechnol. 2010 Mar;86(1):51-62 PubMed
Curr Genet. 1993 Nov;24(5):421-7 PubMed
Mol Gen Genet. 1991 Jan;225(1):56-64 PubMed
Fungal Genet Biol. 2012 Feb;49(2):114-22 PubMed
Bioeng Bugs. 2010 Nov-Dec;1(6):395-403 PubMed
J Microbiol Biotechnol. 2013 May;23(5):674-80 PubMed
J Microbiol Methods. 2008 Feb;72(2):111-5 PubMed
Appl Environ Microbiol. 1989 Sep;55(9):2242-6 PubMed
Nat Rev Drug Discov. 2007 Jan;6(1):19-20 PubMed
Appl Environ Microbiol. 1995 Jan;61(1):352-6 PubMed
J Microbiol Methods. 2007 Jun;69(3):512-7 PubMed
BMC Microbiol. 2015 Feb 06;15:20 PubMed
Biotechnol Adv. 2013 Mar-Apr;31(2):287-311 PubMed
Appl Environ Microbiol. 2004 Feb;70(2):1031-9 PubMed
J Microbiol Methods. 2007 Sep;70(3):519-27 PubMed
Nat Biotechnol. 1998 Sep;16(9):839-42 PubMed
FEMS Microbiol Lett. 2004 Jun 1;235(1):43-9 PubMed
Curr Genet. 1999 Aug;36(1-2):98-104 PubMed
Yeast. 2001 Aug;18(11):1015-21 PubMed