Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
M-ERA.NET Transnational framework, M2Neural Project
EC | Seventh Framework Programme (European Union Seventh Framework Programme) - International
M-ERA.NET Transnational framework, M2Neural Project
EC | Seventh Framework Programme (European Union Seventh Framework Programme) - International
APVV-14-0858
Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) - International
APVV 15-0485
Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) - International
PubMed
29967422
PubMed Central
PMC6028437
DOI
10.1038/s41598-018-28140-3
PII: 10.1038/s41598-018-28140-3
Knihovny.cz E-resources
- MeSH
- Dexamethasone pharmacokinetics MeSH
- Dynamic Light Scattering MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Drug Delivery Systems methods MeSH
- Micelles MeSH
- Drug Carriers chemistry pharmacokinetics MeSH
- Oxazoles chemistry MeSH
- Polymers chemistry MeSH
- Microscopy, Electron, Transmission MeSH
- Ultrasonics methods MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dexamethasone MeSH
- Micelles MeSH
- Drug Carriers MeSH
- Oxazoles MeSH
- poly(2-oxazoline) MeSH Browser
- Polymers MeSH
Among external stimuli used to trigger release of a drug from a polymeric carrier, ultrasound has gained increasing attention due to its non-invasive nature, safety and low cost. Despite this attention, there is only limited knowledge about how materials available for the preparation of drug carriers respond to ultrasound. This study investigates the effect of ultrasound on the release of a hydrophobic drug, dexamethasone, from poly(2-oxazoline)-based micelles. Spontaneous and ultrasound-mediated release of dexamethasone from five types of micelles made of poly(2-oxazoline) block copolymers, composed of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly(2-n-propyl-2-oxazoline) or poly(2-butyl-2-oxazoline-co-2-(3-butenyl)-2-oxazoline), was studied. The release profiles were fitted by zero-order and Ritger-Peppas models. The ultrasound increased the amount of released dexamethasone by 6% to 105% depending on the type of copolymer, the amount of loaded dexamethasone, and the stimulation time point. This study investigates for the first time the interaction between different poly(2-oxazoline)-based micelle formulations and ultrasound waves, quantifying the efficacy of such stimulation in modulating dexamethasone release from these nanocarriers.
See more in PubMed
Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. Adv. Mater. 2010;22:4925–4943. doi: 10.1002/adma.201002072. PubMed DOI
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release. 2008;126:187–204. doi: 10.1016/j.jconrel.2007.12.017. PubMed DOI
Tokarev I, Minko S. Stimuli-responsive hydrogel thin films. Soft Matter. 2009;5:511–524. doi: 10.1039/B813827C. DOI
Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery. Soft Matter. 2011;7:5908–5916. doi: 10.1039/c0sm01307b. DOI
Karimi M, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016;45:1457–1501. doi: 10.1039/C5CS00798D. PubMed DOI PMC
Wang, Y. & Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2 (2017).
Ricotti L, Cafarelli A, Iacovacci V, Vannozzi L, Menciassi A. Advanced Micro-Nano-Bio Systems for Future Targeted Therapies. Curr. Nanosci. 2015;11:144–160. doi: 10.2174/1573413710666141114221246. DOI
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013;12:991–1003. doi: 10.1038/nmat3776. PubMed DOI
Deckers R, Moonen CTW. Ultrasound triggered, image guided, local drug delivery. J. Control. Release. 2010;148:25–33. doi: 10.1016/j.jconrel.2010.07.117. PubMed DOI
Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev. 2014;72:3–14. doi: 10.1016/j.addr.2013.12.010. PubMed DOI PMC
Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 2005;4:255–260. doi: 10.1038/nrd1662. PubMed DOI
Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J. Drug Target. 2015;23:16–42. doi: 10.3109/1061186X.2014.954119. PubMed DOI
Husseini GA, Pitt WG. Micelles and Nanoparticles for Ultrasonic Drug and gene Delivery. Adv. Drug Deliv. Rev. 2008;60:1137–1152. doi: 10.1016/j.addr.2008.03.008. PubMed DOI PMC
Rapoport N. Ultrasound-mediated micellar drug delivery. Int. J. Hyperth. 2012;28:374–85. doi: 10.3109/02656736.2012.665567. PubMed DOI
Xia, H., Zhao, Y. & Tong, R. In Therapeutic Ultrasound (eds Escoffre, J.-M. & Bouakaz, A.) 880, 365–384 (Springer US, 2016).
Xuan J, Pelletier M, Xia H, Zhao Y. Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol. Chem. Phys. 2011;212:498–506. doi: 10.1002/macp.201000624. DOI
Li Y, Tong R, Xia H, Zhang H, Xuan J. High intensity focused ultrasound and redox dual responsive polymer micelles. Chem. Commun. 2010;46:7739–7741. doi: 10.1039/c0cc02628j. PubMed DOI
Husseini Ga, Pitt WG, Martins AM. Ultrasonically triggered drug delivery: Breaking the barrier. Colloids Surfaces B Biointerfaces. 2014;123:364–386. doi: 10.1016/j.colsurfb.2014.07.051. PubMed DOI
Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J. Control. Release. 2000;69:43–52. doi: 10.1016/S0168-3659(00)00278-9. PubMed DOI
Tanbour, R., M. Martins, A., G. Pitt, W. & A. Husseini, G. Drug Delivery Systems Based on Polymeric Micelles andUltrasound: A Review. Curr. Pharm. Des. 22, 2796–2807 (2016). PubMed
Hoogenboom R, Schlaad H. Bioinspired Poly(2-oxazoline)s. Polymers (Basel). 2011;3:467–488. doi: 10.3390/polym3010467. DOI
Guillerm B, Monge S, Lapinte V, Robin JJ. How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol. Rapid Commun. 2012;33:1600–1612. doi: 10.1002/marc.201200266. PubMed DOI
Wyffels L, et al. μpET imaging of the pharmacokinetic behavior of medium and high molar mass 89Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol) J. Control. Release. 2016;235:63–71. doi: 10.1016/j.jconrel.2016.05.048. PubMed DOI
Kronek J, et al. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines) J. Mater. Sci. Mater. Med. 2011;22:1725–1734. doi: 10.1007/s10856-011-4346-z. PubMed DOI
Luxenhofer R, et al. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J. Control. Release. 2011;153:73–82. doi: 10.1016/j.jconrel.2011.04.010. PubMed DOI PMC
He Z, et al. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309. doi: 10.1016/j.biomaterials.2016.06.002. PubMed DOI PMC
Moreadith RW, et al. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 2017;88:524–552. doi: 10.1016/j.eurpolymj.2016.09.052. DOI
Farkas P, Korcova J, Kronek J, Bystricky S. Preparation of synthetic polyoxazoline based carrier and Vibrio cholerae O-specific polysaccharide conjugate vaccine. Eur. J. Med. Chem. 2010;45:795–9. doi: 10.1016/j.ejmech.2009.11.002. PubMed DOI
Tong J, et al. Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo. Mol. Pharm. 2013;10:360–377. doi: 10.1021/mp300496x. PubMed DOI PMC
Konradi R, Acikgoz C, Textor M. Polyoxazolines for nonfouling surface coatings - a direct comparison to the gold standard PEG. Macromol. Rapid Commun. 2012;33:1663–1676. doi: 10.1002/marc.201200422. PubMed DOI
Dworak A, et al. Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment. J. Mater. Sci. Mater. Med. 2014;25:1149–1163. doi: 10.1007/s10856-013-5135-7. PubMed DOI
Zahoranova A, et al. Poly(2-oxazoline) Hydrogels Crosslinked with Aliphatic bis(2-oxazoline)s: Properties, Cytotoxicity, and Cell Cultivation. J. Polym. Sci. Part A Polym. Chem. 2016;54:1548–1559. doi: 10.1002/pola.28009. DOI
Lorson T, et al. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules. 2017;18:2161–2171. doi: 10.1021/acs.biomac.7b00481. PubMed DOI
Hsiue G, Chiang H, Wang C, Juang T. Nonviral Gene Carriers Based on Diblock Copolymers of Poly(2-ethyl-2-oxazoline) and Linear Polyethylenimine. Bioconjug. Chem. 2006;35:781–786. doi: 10.1021/bc050317u. PubMed DOI
He Z, et al. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector. Macromol. Biosci. 2015;15:1004–1020. doi: 10.1002/mabi.201500021. PubMed DOI PMC
Hruby M, et al. Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems. Macromol. Biosci. 2010;10:916–924. doi: 10.1002/mabi.201000034. PubMed DOI
Bonné TB, Lüdtke K, Jurdan R, Štěpánek P, Papadakis CM. Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid Polym. Sci. 2004;282:833–843. doi: 10.1007/s00396-004-1131-2. DOI
Trzebicka B, Koseva N, Mitova V, Dworak A. Organization of poly(2-ethyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) copolymers in water solution. Polymer (Guildf). 2010;51:2486–2493. doi: 10.1016/j.polymer.2010.03.043. DOI
Krumm C, Konieczny S, Dropalla GJ, Milbradt M, Tiller JC. Amphiphilic Polymer Conetworks Based on End Group Cross-Linked Poly(2-oxazoline) Homo- and Triblock Copolymers. Macromolecules. 2013;46:3234–3245. doi: 10.1021/ma4004665. DOI
Stoenescu R, Meier W. Asymmetric membranes from amphiphilic ABC triblock copolymers. Mol. Cryst. Liq. Cryst. 2004;417:3016–3017. doi: 10.1080/15421400490478812. PubMed DOI
Seo Y, et al. Poly(2-oxazoline) block copolymer based formulations of taxanes: Effect of copolymer and drug structure, concentration, and environmental factors. Polym. Adv. Technol. 2015;26:837–850. doi: 10.1002/pat.3556. DOI
He Z, et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release. 2015;208:67–75. doi: 10.1016/j.jconrel.2015.02.024. PubMed DOI PMC
Luxenhofer R, et al. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–4979. doi: 10.1016/j.biomaterials.2010.02.057. PubMed DOI PMC
Milonaki Y, Kaditi E, Pispas S, Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: Self-organization in aqueous media and drug encapsulation. J. Polym. Sci. Part A Polym. Chem. 2012;50:1226–1237. doi: 10.1002/pola.25888. DOI
Lübtow MM, Hahn L, Haider MS, Luxenhofer R. Drug Specificity, Synergy and Antagonism in Ultrahigh Capacity Poly(2-oxazoline)/Poly(2-oxazine) based Formulations. J. Am. Chem. Soc. 2017;139:10980–10983. doi: 10.1021/jacs.7b05376. PubMed DOI
Schulz A, et al. Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s. ACS Nano. 2014;8:2686–2696. doi: 10.1021/nn406388t. PubMed DOI PMC
Kempe K, et al. Multifunctional Poly(2-oxazoline) Nanoparticles for Biological Applications. Macromol. Rapid Commun. 2010;31:1869–1873. doi: 10.1002/marc.201000283. PubMed DOI
Schubert, U. S., Hartlieb, M. & Kempe, K. Covalently cross-linked poly(2-oxazoline) materials for biomedical applications - from hydrogels to self-assembled and templated structures. J. Mater. Chem. B3, 526–538 (2015). PubMed
Marin A, et al. Drug delivery in pluronic micelles: Effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J. Control. Release. 2002;84:39–47. doi: 10.1016/S0168-3659(02)00262-6. PubMed DOI
Zahoranová A, Mrlík M, Tomanová K, Kronek J, Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017;218:1–12. doi: 10.1002/macp.201700031. DOI
Grube M, Leiske MN, Schubert US, Nischang I. POx as an Alternative to PEG? A Hydrodynamic and Light Scattering Study. Macromolecules. 2018;51:1905–1916. doi: 10.1021/acs.macromol.7b02665. DOI
Yalkowsky, S. H., He, Y. & Jain, P. Handbook of Aqueous Solubility Data (2010).
Janas C, Mostaphaoui Z, Schmiederer L, Bauer J, Wacker MG. Novel polymeric micelles for drug delivery: Material characterization and formulation screening. Int. J. Pharm. 2016;509:197–207. doi: 10.1016/j.ijpharm.2016.05.029. PubMed DOI
Yang J, Yan J, Zhou Z, Amsden BG. Dithiol-PEG-PDLLA micelles: Preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules. 2014;15:1346–1354. doi: 10.1021/bm4018879. PubMed DOI
Wu Q, et al. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model. Sci. Rep. 2015;5:13553. doi: 10.1038/srep13553. PubMed DOI PMC
Wang Q, et al. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J. Control. Release. 2016;230:64–72. doi: 10.1016/j.jconrel.2016.03.035. PubMed DOI
Nidhi K, Indrajeet S, Khushboo M, Gauri K, Sen DJ. Hydrotropy: A promising tool for solubility enhancement: A review. Int. J. Drug Dev. Res. 2011;3:26–33.
Wang Y, et al. Effective improvement of the neuroprotective activity after spinal cord injury by synergistic effect of glucocorticoid with biodegradable amphipathic nanomicelles. Drug Deliv. 2017;24:391–401. doi: 10.1080/10717544.2016.1256003. PubMed DOI PMC
Kumi BC, Hammouda B, Greer SC. Self-assembly of the triblock copolymer 17R4 poly(propylene oxide)14–poly(ethylene oxide)24– poly(propylene oxide)14 in D2O. J. Colloid Interface Sci. 2014;434:201–207. doi: 10.1016/j.jcis.2014.07.049. PubMed DOI
Xu R, Winnik Ma, Hallett FR, Riess G, Croucher MD. Light-scattering study of the association behavior of styrene-ethylene oxide block copolymers in aqueous solution. Macromolecules. 1991;24:87–93. doi: 10.1021/ma00001a014. DOI
Fetsch C, Gaitzsch J, Messager L, Battaglia G, Luxenhofer R. Self-Assembly of Amphiphilic Block Copolypeptoids – Micelles, Worms and Polymersomes. Sci. Rep. 2016;6:33491. doi: 10.1038/srep33491. PubMed DOI PMC
Krumm C, et al. Well-Defined Amphiphilic Poly(2-oxazoline) ABA-Triblock Copolymers and Their Aggregation Behavior in Aqueous Solution. Macromol. Rapid Commun. 2012;33:1677–1682. doi: 10.1002/marc.201200192. PubMed DOI
Gourevich D, et al. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J. Control. Release. 2013;170:316–324. doi: 10.1016/j.jconrel.2013.05.038. PubMed DOI
Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int. J. Pharm. 2008;364:328–343. doi: 10.1016/j.ijpharm.2008.09.004. PubMed DOI
Nichols JW, Bae YH. Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 2012;7:606–618. doi: 10.1016/j.nantod.2012.10.010. PubMed DOI PMC
Wurth S, et al. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials. 2017;122:114–129. doi: 10.1016/j.biomaterials.2017.01.014. PubMed DOI
Ricotti L, Assaf T, Dario P, Menciassi A. Wearable and implantable pancreas substitutes. J. Artif. Organs. 2013;16:9–22. doi: 10.1007/s10047-012-0660-6. PubMed DOI
Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12:188–196. doi: 10.1208/s12248-010-9175-3. PubMed DOI PMC
Witte H, Seeliger W. Cyclische Imidsaureester aus Nitrilen und Aminoalkoholen. Justus Liebigs Ann. Chem. 1974;6:996–1009. doi: 10.1002/jlac.197419740615. DOI
Néry L, Lefebvre H, Fradet A. Kinetic and Mechanistic Studies of Carboxylic Acid-Bisoxazoline Chain-Coupling Reactions. Macromol. Chem. Phys. 2003;204:1755–1764. doi: 10.1002/macp.200350036. DOI
Petrova S, et al. Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym. Chem. 2014;5:3884–3893. doi: 10.1039/C4PY00114A. DOI