Effect of Dexamethasone on Thermoresponsive Behavior of Poly(2-Oxazoline) Diblock Copolymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
M 2805-N (Meitner Programm)
Austrian Science Fund (FWF)
1/0602/19
Slovak Grant Agency VEGA
2/0172/21
Slovak Grant Agency VEGA
LASERLAB-EUROPE (Grant agreement No. 871124)
Horizon 2020 Framework Programme
ITMS project code 313021T081 (Building-up Centre for advanced materials application of the Slovak Academy of Sciences)
Research & Innovation Operational Programme (European Regional Development Fund)
PubMed
33919321
PubMed Central
PMC8122420
DOI
10.3390/polym13091357
PII: polym13091357
Knihovny.cz E-zdroje
- Klíčová slova
- crystallization, drug delivery systems, ring-opening polymerization, self-assembly, stimuli-responsive polymers,
- Publikační typ
- časopisecké články MeSH
Thermoresponsive polymers play an important role in designing drug delivery systems for biomedical applications. In this contribution, the effect of encapsulated hydrophobic drug dexamethasone on thermoresponsive behavior of diblock copolymers was studied. A small series of diblock copoly(2-oxazoline)s was prepared by combining thermoresponsive 2-n-propyl-2-oxazoline (nPrOx) and hydrophilic 2-methyl-2-oxazoline (MeOx) in two ratios and two polymer chain lengths. The addition of dexamethasone affected the thermoresponsive behavior of one of the copolymers, nPrOx20-MeOx180, in the aqueous medium by shifting the cloud point temperature to lower values. In addition, the formation of microparticles containing dexamethasone was observed during the heating of the samples. The morphology and number of microparticles were affected by the structure and concentration of copolymer, the drug concentration, and the temperature. The crystalline nature of formed microparticles was confirmed by polarized light microscopy, confocal Raman microscopy, and wide-angle X-ray scattering. The results demonstrate the importance of studying drug/polymer interactions for the future development of thermoresponsive drug carriers.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Institute of Physics of the Slovak Academy of Sciences Dúbravská cesta 9 845 11 Bratislava Slovakia
International Laser Centre Department of Biophotonics Ilkovičova 3 841 04 Bratislava Slovakia
Zobrazit více v PubMed
Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm. J. 2020;28:255–265. doi: 10.1016/j.jsps.2020.01.004. PubMed DOI PMC
Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013;12:991–1003. doi: 10.1038/nmat3776. PubMed DOI
Karimi M., Zangabad P.S., Ghasemi A., Amiri M., Bahrami M., Malekzad H., Asl H.G., Mahdieh Z., Bozorgomid M., Ghasemi A., et al. Temperature-Responsive Smart Nanocarriers for Delivery of Therapeutic Agents: Applications and Recent Advances. ACS Appl. Mater. Interfaces. 2016;8:21107–21133. doi: 10.1021/acsami.6b00371. PubMed DOI PMC
Zhang Q., Weber C., Schubert U.S., Hoogenboom R. Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 2017;4:109–116. doi: 10.1039/C7MH00016B. DOI
Liu R., Fraylich M., Saunders B.R. Thermoresponsive copolymers: From fundamental studies to applications. Colloid Polym. Sci. 2009;287:627–643. doi: 10.1007/s00396-009-2028-x. DOI
Luxenhofer R., Han Y., Schulz A., Tong J., He Z., Kabanov A.V., Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–1631. doi: 10.1002/marc.201200354. PubMed DOI PMC
Saeki S., Kuwahara N., Konno S., Kaneko M. Upper and Lower Critical Solution Temperatures in poly(ethylene glycol) solutions. Macromolecules. 1973;6:589–593. doi: 10.1021/ma60034a024. DOI
Kermagoret A., Fustin C.A., Bourguignon M., Detrembleur C., Jérôme C., Debuigne A. One-pot controlled synthesis of double thermoresponsive N-vinylcaprolactam-based copolymers with tunable LCSTs. Polym. Chem. 2013;4:2575–2583. doi: 10.1039/c3py00134b. DOI
Batrakova E.V., Kabanov A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release. 2008;130:98–106. doi: 10.1016/j.jconrel.2008.04.013. PubMed DOI PMC
Alakhova D.Y., Kabanov A.V. Pluronics and MDR reversal: An update. Mol. Pharm. 2014;11:2566–2578. doi: 10.1021/mp500298q. PubMed DOI PMC
Hocine S., Li M.-H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter. 2013;9:5839. doi: 10.1039/c3sm50428j. DOI
Kronek J., Kronekova Z., Luston J., Paulovicova E., Paulovicova L., Mendrek B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines) J. Mater. Sci. Mater. Med. 2011;22:1725–1734. doi: 10.1007/s10856-011-4346-z. PubMed DOI
Luxenhofer R., Sahay G., Schulz A., Alakhova D., Bronich T.K., Jordan R., Kabanov A. V Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J. Control. Release. 2011;153:73–82. doi: 10.1016/j.jconrel.2011.04.010. PubMed DOI PMC
Bauer M., Schroeder S., Tauhardt L., Kempe K., Schubert U.S., Fischer D. In vitro hemocompatibility and cytotoxicity study of poly(2-methyl-2-oxazoline) for biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2013;51:1816–1821. doi: 10.1002/pola.26564. DOI
Luxenhofer R., Jordan R. Click Chemistry with Poly(2-oxazoline)s. Macromolecules. 2006;39:3509–3516. doi: 10.1021/ma052515m. DOI
Rossegger E., Schenk V., Wiesbrock F. Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers. 2013;5:956. doi: 10.3390/polym5030956. DOI
Hoogenboom R. Poly(2-oxazoline)s: A polymer class with numerous potential applications. Angew. Chemie Int. Ed. 2009;48:7978–7994. doi: 10.1002/anie.200901607. PubMed DOI
Luxenhofer R., Schulz A., Roques C., Li S., Bronich T.K., Batrakova E.V., Jordan R., Kabanov A.V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–4979. doi: 10.1016/j.biomaterials.2010.02.057. PubMed DOI PMC
Hsiue G.H., Chiang H.Z., Wang C.H., Juang T.M. Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2- oxazoline) and linear polyethylenimine. Bioconjug. Chem. 2006;17:781–786. doi: 10.1021/bc050317u. PubMed DOI
Konradi R., Acikgoz C., Textor M. Polyoxazolines for nonfouling surface coatings—A direct comparison to the gold standard PEG. Macromol. Rapid Commun. 2012;33:1663–1676. doi: 10.1002/marc.201200422. PubMed DOI
Zahoranova A., Kronekova Z., Zahoran M., Chorvat D., Janigova I., Kronek J. Poly(2-oxazoline) Hydrogels Crosslinked with Aliphatic bis(2-oxazoline)s: Properties, Cytotoxicity, and Cell Cultivation. J. Polym. Sci. Part A Polym. Chem. 2016;54:1548–1559. doi: 10.1002/pola.28009. DOI
Šrámková P., Zahoranová A., Kroneková Z., Šišková A., Kronek J. Poly(2-oxazoline) hydrogels by photoinduced thiol-ene “click” reaction using different dithiol crosslinkers. J. Polym. Res. 2017;24:82. doi: 10.1007/s10965-017-1237-0. DOI
Hu C., Hahn L., Yang M., Altmann A., Stahlhut P., Groll J., Luxenhofer R. Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J. Mater. Sci. 2020;56:691–705. doi: 10.1007/s10853-020-05190-5. DOI
Salgarella A.R.R., Zahoranová A., Šrámková P., Majerčíková M., Pavlova E., Luxenhofer R., Kronek J., Lacík I., Ricotti L. Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Sci. Rep. 2018;8:9893. doi: 10.1038/s41598-018-28140-3. PubMed DOI PMC
Cvek M., Zahoranova A., Mrlik M., Sramkova P., Minarik A., Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surf. B Biointerfaces. 2020;190:110912. doi: 10.1016/j.colsurfb.2020.110912. PubMed DOI
De la Rosa V.R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014;25:1211–1225. doi: 10.1007/s10856-013-5034-y. PubMed DOI
Hoogenboom R., Thijs H.M.L., Jochems M.J.H.C., Van Lankvelt B.M., Fijten M.W.M., Schubert U.S. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(N-isopropylacrylamide)? Chem. Commun. 2008:5758–5760. doi: 10.1039/b813140f. PubMed DOI
Trinh L.T.T., Lambermont-Thijs H.M.L., Schubert U.S., Hoogenboom R., Kjøniksen A.L. Thermoresponsive Poly(2-oxazoline) block copolymers exhibiting two cloud points: Complex multistep assembly behavior. Macromolecules. 2012;45:4337–4345. doi: 10.1021/ma300570j. DOI
Glassner M., Lava K., De La Rosa V.R., Hoogenboom R. Tuning the LCST of poly(2-cyclopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline. J. Polym. Sci. Part A Polym. Chem. 2014;52:3118–3122. doi: 10.1002/pola.27364. DOI
Kowalczuk A., Kronek J., Bosowska K., Trzebicka B., Dworak A. Star poly(2-ethyl-2-oxazoline)s-synthesis and thermosensitivity. Polym. Int. 2011;60:1001–1009. doi: 10.1002/pi.3103. DOI
Amirova A., Tobolina A., Kirila T., Blokhin A., Razina A., Tenkovtsev A., Filippov A. Influence of core configuration and arm structure on solution properties of new thermosensitive star-shaped poly(2-alkyl-2-oxazolines) Int. J. Polym. Anal. Charact. 2018;23:278–285. doi: 10.1080/1023666X.2018.1441483. DOI
Sponchioni M., Palmiero U.C., Moscatelli D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C. 2019;102:589–605. doi: 10.1016/j.msec.2019.04.069. PubMed DOI
Hruby M., Filippov S.K., Panek J., Novakova M., Mackova H., Kucka J., Vetvicka D., Ulbrich K. Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems a. Macromol. Biosci. 2010;10:916–924. doi: 10.1002/mabi.201000034. PubMed DOI
Sano K., Kanada Y., Takahashi K., Ding N., Kanazaki K., Mukai T., Ono M., Saji H. Enhanced Delivery of Radiolabeled Polyoxazoline into Tumors via Self-Aggregation under Hyperthermic Conditions. Mol. Pharm. 2018;15:3997–4003. doi: 10.1021/acs.molpharmaceut.8b00441. PubMed DOI
Kim B.S., Kim H.J., Osawa S., Hayashi K., Toh K., Naito M., Min H.S., Yi Y., Kwon I.C., Kataoka K., et al. Dually Stabilized Triblock Copolymer Micelles with Hydrophilic Shell and Hydrophobic Interlayer for Systemic Antisense Oligonucleotide Delivery to Solid Tumor. ACS Biomater. Sci. Eng. 2019;5:5770–5780. doi: 10.1021/acsbiomaterials.9b00384. PubMed DOI
Hijazi M., Esra T., Tiller J.C. Full Thermal Switching of Enzymes by Thermoresponsive Poly (2-oxazoline)-Based Enzyme Inhibitors. Chem. A Eur. J. 2020;26:13367–13371. doi: 10.1002/chem.202001909. PubMed DOI PMC
Mees M., Haladjova E., Momekova D., Momekov G., Shestakova P.S., Tsvetanov C.B., Hoogenboom R., Rangelov S. Partially Hydrolyzed Poly(n-propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. Biomacromolecules. 2016;17:3580–3590. doi: 10.1021/acs.biomac.6b01088. PubMed DOI
Horby P., Lim W.S., Emberson J., Mafham M., Bell J., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv. 2020 doi: 10.1101/2020.06.22.20137273. DOI
Qin B.S., Geng Y., Discher D.E., Yang S. Temperature-Controlled Assembly and Release from Polymer Vesicles of Poly (ethylene oxide)-block-poly(N -isopropylacrylamide) Adv. Mater. 2006;18:2905–2909. doi: 10.1002/adma.200601019. DOI
Schulz A., Jaksch S., Schubel R., Wegener E., Di Z., Han Y., Meister A., Kressler J., Kabanov A.V., Luxenhofer R., et al. Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s. ACS Nano. 2014;8:2686–2696. doi: 10.1021/nn406388t. PubMed DOI PMC
Poppler A., Michael M.L., Schlauersbach J., Wiest J., Meinel L., Luxenhofer R. Polymers Loading-Dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy ** Angewandte. Polymers. 2019;58:18540–18546. doi: 10.1002/anie.201908914. PubMed DOI PMC
Milonaki Y., Kaditi E., Pispas S., Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: Self-organization in aqueous media and drug encapsulation. J. Polym. Sci. Part A Polym. Chem. 2012;50:1226–1237. doi: 10.1002/pola.25888. DOI
Zahoranová A., Mrlík M., Tomanová K., Kronek J., Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017;218:1–12. doi: 10.1002/macp.201700031. DOI
Witte H., Seeliger W. Cyclische Imidsäureester aus Nitrilen und Aminoalkoholen. Justus Liebigs Ann. Chem. 1974;6:996–1009. doi: 10.1002/jlac.197419740615. DOI
He Z., Schulz A., Wan X., Seitz J., Bludau H., Alakhova D.Y., Darr D.B., Perou C.M., Jordan R., Ojima I., et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release. 2015;208:67–75. doi: 10.1016/j.jconrel.2015.02.024. PubMed DOI PMC
Struble E.B., Kirschbaum N., Liu J., Marszal E., Shapiro M. Characterization of Therapeutic Proteins. Volume 21. Springer International Publishing; Berlin/Heidelberg, Germany: 2017.
Wyffels L., Verbrugghen T., Monnery B.D., Glassner M., Stroobants S., Hoogenboom R., Staelens S. μPET imaging of the pharmacokinetic behavior of medium and high molar mass 89Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol) J. Control. Release. 2016;235:63–71. doi: 10.1016/j.jconrel.2016.05.048. PubMed DOI
Riabtseva A., Kaberov L.I., Noirez L., Ryukhtin V., Nardin C., Verbraeken B., Hoogenboom R., Stepanek P., Filippov S.K. Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles. Eur. Polym. J. 2018;99:518–527. doi: 10.1016/j.eurpolymj.2018.01.007. DOI
Ďorďovič V., Verbraeken B., Hogenboom R., Kereïche S., Matějíček P., Uchman M. Tuning of Thermoresponsivity of a Poly(2-alkyl-2-oxazoline) Block Copolymer by Interaction with Surface-Active and Chaotropic Metallacarborane Anion. Chem. An Asian J. 2018;13:838–845. doi: 10.1002/asia.201701720. PubMed DOI
Takahashi R., Sato T., Terao K., Qiu X.P., Winnik F.M. Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules. 2012;45:6111–6119. doi: 10.1021/ma300969w. DOI
Yu S.-H., Cölfen H., Hartmann J., Antonietti M. Biomimetic Crystallization of Calcium Carbonate Spherules with Controlled Surface Structures and Sizes by Double-Hydrophilic Block Copolymers. Adv. Funct. Mater. 2002;12:541–545. doi: 10.1002/1616-3028(20020805)12:8<541::AID-ADFM541>3.0.CO;2-3. DOI
Oleszko-Torbus N., Utrata-Wesołek A., Bochenek M., Lipowska-Kur D., Dworak A., Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym. Chem. 2019;11:15–33. doi: 10.1039/C9PY01316D. DOI
Rasenack N., Müller B.W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002;19:1894–1900. doi: 10.1023/A:1021410028371. PubMed DOI
Lin K., Wu C., Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014;10:4071–4102. doi: 10.1016/j.actbio.2014.06.017. PubMed DOI