Effect of Dexamethasone on Thermoresponsive Behavior of Poly(2-Oxazoline) Diblock Copolymers

. 2021 Apr 21 ; 13 (9) : . [epub] 20210421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33919321

Grantová podpora
M 2805-N (Meitner Programm) Austrian Science Fund (FWF)
1/0602/19 Slovak Grant Agency VEGA
2/0172/21 Slovak Grant Agency VEGA
LASERLAB-EUROPE (Grant agreement No. 871124) Horizon 2020 Framework Programme
ITMS project code 313021T081 (Building-up Centre for advanced materials application of the Slovak Academy of Sciences) Research & Innovation Operational Programme (European Regional Development Fund)

Thermoresponsive polymers play an important role in designing drug delivery systems for biomedical applications. In this contribution, the effect of encapsulated hydrophobic drug dexamethasone on thermoresponsive behavior of diblock copolymers was studied. A small series of diblock copoly(2-oxazoline)s was prepared by combining thermoresponsive 2-n-propyl-2-oxazoline (nPrOx) and hydrophilic 2-methyl-2-oxazoline (MeOx) in two ratios and two polymer chain lengths. The addition of dexamethasone affected the thermoresponsive behavior of one of the copolymers, nPrOx20-MeOx180, in the aqueous medium by shifting the cloud point temperature to lower values. In addition, the formation of microparticles containing dexamethasone was observed during the heating of the samples. The morphology and number of microparticles were affected by the structure and concentration of copolymer, the drug concentration, and the temperature. The crystalline nature of formed microparticles was confirmed by polarized light microscopy, confocal Raman microscopy, and wide-angle X-ray scattering. The results demonstrate the importance of studying drug/polymer interactions for the future development of thermoresponsive drug carriers.

Zobrazit více v PubMed

Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm. J. 2020;28:255–265. doi: 10.1016/j.jsps.2020.01.004. PubMed DOI PMC

Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013;12:991–1003. doi: 10.1038/nmat3776. PubMed DOI

Karimi M., Zangabad P.S., Ghasemi A., Amiri M., Bahrami M., Malekzad H., Asl H.G., Mahdieh Z., Bozorgomid M., Ghasemi A., et al. Temperature-Responsive Smart Nanocarriers for Delivery of Therapeutic Agents: Applications and Recent Advances. ACS Appl. Mater. Interfaces. 2016;8:21107–21133. doi: 10.1021/acsami.6b00371. PubMed DOI PMC

Zhang Q., Weber C., Schubert U.S., Hoogenboom R. Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 2017;4:109–116. doi: 10.1039/C7MH00016B. DOI

Liu R., Fraylich M., Saunders B.R. Thermoresponsive copolymers: From fundamental studies to applications. Colloid Polym. Sci. 2009;287:627–643. doi: 10.1007/s00396-009-2028-x. DOI

Luxenhofer R., Han Y., Schulz A., Tong J., He Z., Kabanov A.V., Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–1631. doi: 10.1002/marc.201200354. PubMed DOI PMC

Saeki S., Kuwahara N., Konno S., Kaneko M. Upper and Lower Critical Solution Temperatures in poly(ethylene glycol) solutions. Macromolecules. 1973;6:589–593. doi: 10.1021/ma60034a024. DOI

Kermagoret A., Fustin C.A., Bourguignon M., Detrembleur C., Jérôme C., Debuigne A. One-pot controlled synthesis of double thermoresponsive N-vinylcaprolactam-based copolymers with tunable LCSTs. Polym. Chem. 2013;4:2575–2583. doi: 10.1039/c3py00134b. DOI

Batrakova E.V., Kabanov A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release. 2008;130:98–106. doi: 10.1016/j.jconrel.2008.04.013. PubMed DOI PMC

Alakhova D.Y., Kabanov A.V. Pluronics and MDR reversal: An update. Mol. Pharm. 2014;11:2566–2578. doi: 10.1021/mp500298q. PubMed DOI PMC

Hocine S., Li M.-H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter. 2013;9:5839. doi: 10.1039/c3sm50428j. DOI

Kronek J., Kronekova Z., Luston J., Paulovicova E., Paulovicova L., Mendrek B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines) J. Mater. Sci. Mater. Med. 2011;22:1725–1734. doi: 10.1007/s10856-011-4346-z. PubMed DOI

Luxenhofer R., Sahay G., Schulz A., Alakhova D., Bronich T.K., Jordan R., Kabanov A. V Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J. Control. Release. 2011;153:73–82. doi: 10.1016/j.jconrel.2011.04.010. PubMed DOI PMC

Bauer M., Schroeder S., Tauhardt L., Kempe K., Schubert U.S., Fischer D. In vitro hemocompatibility and cytotoxicity study of poly(2-methyl-2-oxazoline) for biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2013;51:1816–1821. doi: 10.1002/pola.26564. DOI

Luxenhofer R., Jordan R. Click Chemistry with Poly(2-oxazoline)s. Macromolecules. 2006;39:3509–3516. doi: 10.1021/ma052515m. DOI

Rossegger E., Schenk V., Wiesbrock F. Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers. 2013;5:956. doi: 10.3390/polym5030956. DOI

Hoogenboom R. Poly(2-oxazoline)s: A polymer class with numerous potential applications. Angew. Chemie Int. Ed. 2009;48:7978–7994. doi: 10.1002/anie.200901607. PubMed DOI

Luxenhofer R., Schulz A., Roques C., Li S., Bronich T.K., Batrakova E.V., Jordan R., Kabanov A.V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–4979. doi: 10.1016/j.biomaterials.2010.02.057. PubMed DOI PMC

Hsiue G.H., Chiang H.Z., Wang C.H., Juang T.M. Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2- oxazoline) and linear polyethylenimine. Bioconjug. Chem. 2006;17:781–786. doi: 10.1021/bc050317u. PubMed DOI

Konradi R., Acikgoz C., Textor M. Polyoxazolines for nonfouling surface coatings—A direct comparison to the gold standard PEG. Macromol. Rapid Commun. 2012;33:1663–1676. doi: 10.1002/marc.201200422. PubMed DOI

Zahoranova A., Kronekova Z., Zahoran M., Chorvat D., Janigova I., Kronek J. Poly(2-oxazoline) Hydrogels Crosslinked with Aliphatic bis(2-oxazoline)s: Properties, Cytotoxicity, and Cell Cultivation. J. Polym. Sci. Part A Polym. Chem. 2016;54:1548–1559. doi: 10.1002/pola.28009. DOI

Šrámková P., Zahoranová A., Kroneková Z., Šišková A., Kronek J. Poly(2-oxazoline) hydrogels by photoinduced thiol-ene “click” reaction using different dithiol crosslinkers. J. Polym. Res. 2017;24:82. doi: 10.1007/s10965-017-1237-0. DOI

Hu C., Hahn L., Yang M., Altmann A., Stahlhut P., Groll J., Luxenhofer R. Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J. Mater. Sci. 2020;56:691–705. doi: 10.1007/s10853-020-05190-5. DOI

Salgarella A.R.R., Zahoranová A., Šrámková P., Majerčíková M., Pavlova E., Luxenhofer R., Kronek J., Lacík I., Ricotti L. Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Sci. Rep. 2018;8:9893. doi: 10.1038/s41598-018-28140-3. PubMed DOI PMC

Cvek M., Zahoranova A., Mrlik M., Sramkova P., Minarik A., Sedlacik M. Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity. Colloids Surf. B Biointerfaces. 2020;190:110912. doi: 10.1016/j.colsurfb.2020.110912. PubMed DOI

De la Rosa V.R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014;25:1211–1225. doi: 10.1007/s10856-013-5034-y. PubMed DOI

Hoogenboom R., Thijs H.M.L., Jochems M.J.H.C., Van Lankvelt B.M., Fijten M.W.M., Schubert U.S. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(N-isopropylacrylamide)? Chem. Commun. 2008:5758–5760. doi: 10.1039/b813140f. PubMed DOI

Trinh L.T.T., Lambermont-Thijs H.M.L., Schubert U.S., Hoogenboom R., Kjøniksen A.L. Thermoresponsive Poly(2-oxazoline) block copolymers exhibiting two cloud points: Complex multistep assembly behavior. Macromolecules. 2012;45:4337–4345. doi: 10.1021/ma300570j. DOI

Glassner M., Lava K., De La Rosa V.R., Hoogenboom R. Tuning the LCST of poly(2-cyclopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline. J. Polym. Sci. Part A Polym. Chem. 2014;52:3118–3122. doi: 10.1002/pola.27364. DOI

Kowalczuk A., Kronek J., Bosowska K., Trzebicka B., Dworak A. Star poly(2-ethyl-2-oxazoline)s-synthesis and thermosensitivity. Polym. Int. 2011;60:1001–1009. doi: 10.1002/pi.3103. DOI

Amirova A., Tobolina A., Kirila T., Blokhin A., Razina A., Tenkovtsev A., Filippov A. Influence of core configuration and arm structure on solution properties of new thermosensitive star-shaped poly(2-alkyl-2-oxazolines) Int. J. Polym. Anal. Charact. 2018;23:278–285. doi: 10.1080/1023666X.2018.1441483. DOI

Sponchioni M., Palmiero U.C., Moscatelli D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C. 2019;102:589–605. doi: 10.1016/j.msec.2019.04.069. PubMed DOI

Hruby M., Filippov S.K., Panek J., Novakova M., Mackova H., Kucka J., Vetvicka D., Ulbrich K. Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems a. Macromol. Biosci. 2010;10:916–924. doi: 10.1002/mabi.201000034. PubMed DOI

Sano K., Kanada Y., Takahashi K., Ding N., Kanazaki K., Mukai T., Ono M., Saji H. Enhanced Delivery of Radiolabeled Polyoxazoline into Tumors via Self-Aggregation under Hyperthermic Conditions. Mol. Pharm. 2018;15:3997–4003. doi: 10.1021/acs.molpharmaceut.8b00441. PubMed DOI

Kim B.S., Kim H.J., Osawa S., Hayashi K., Toh K., Naito M., Min H.S., Yi Y., Kwon I.C., Kataoka K., et al. Dually Stabilized Triblock Copolymer Micelles with Hydrophilic Shell and Hydrophobic Interlayer for Systemic Antisense Oligonucleotide Delivery to Solid Tumor. ACS Biomater. Sci. Eng. 2019;5:5770–5780. doi: 10.1021/acsbiomaterials.9b00384. PubMed DOI

Hijazi M., Esra T., Tiller J.C. Full Thermal Switching of Enzymes by Thermoresponsive Poly (2-oxazoline)-Based Enzyme Inhibitors. Chem. A Eur. J. 2020;26:13367–13371. doi: 10.1002/chem.202001909. PubMed DOI PMC

Mees M., Haladjova E., Momekova D., Momekov G., Shestakova P.S., Tsvetanov C.B., Hoogenboom R., Rangelov S. Partially Hydrolyzed Poly(n-propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. Biomacromolecules. 2016;17:3580–3590. doi: 10.1021/acs.biomac.6b01088. PubMed DOI

Horby P., Lim W.S., Emberson J., Mafham M., Bell J., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv. 2020 doi: 10.1101/2020.06.22.20137273. DOI

Qin B.S., Geng Y., Discher D.E., Yang S. Temperature-Controlled Assembly and Release from Polymer Vesicles of Poly (ethylene oxide)-block-poly(N -isopropylacrylamide) Adv. Mater. 2006;18:2905–2909. doi: 10.1002/adma.200601019. DOI

Schulz A., Jaksch S., Schubel R., Wegener E., Di Z., Han Y., Meister A., Kressler J., Kabanov A.V., Luxenhofer R., et al. Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s. ACS Nano. 2014;8:2686–2696. doi: 10.1021/nn406388t. PubMed DOI PMC

Poppler A., Michael M.L., Schlauersbach J., Wiest J., Meinel L., Luxenhofer R. Polymers Loading-Dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy ** Angewandte. Polymers. 2019;58:18540–18546. doi: 10.1002/anie.201908914. PubMed DOI PMC

Milonaki Y., Kaditi E., Pispas S., Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: Self-organization in aqueous media and drug encapsulation. J. Polym. Sci. Part A Polym. Chem. 2012;50:1226–1237. doi: 10.1002/pola.25888. DOI

Zahoranová A., Mrlík M., Tomanová K., Kronek J., Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017;218:1–12. doi: 10.1002/macp.201700031. DOI

Witte H., Seeliger W. Cyclische Imidsäureester aus Nitrilen und Aminoalkoholen. Justus Liebigs Ann. Chem. 1974;6:996–1009. doi: 10.1002/jlac.197419740615. DOI

He Z., Schulz A., Wan X., Seitz J., Bludau H., Alakhova D.Y., Darr D.B., Perou C.M., Jordan R., Ojima I., et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release. 2015;208:67–75. doi: 10.1016/j.jconrel.2015.02.024. PubMed DOI PMC

Struble E.B., Kirschbaum N., Liu J., Marszal E., Shapiro M. Characterization of Therapeutic Proteins. Volume 21. Springer International Publishing; Berlin/Heidelberg, Germany: 2017.

Wyffels L., Verbrugghen T., Monnery B.D., Glassner M., Stroobants S., Hoogenboom R., Staelens S. μPET imaging of the pharmacokinetic behavior of medium and high molar mass 89Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol) J. Control. Release. 2016;235:63–71. doi: 10.1016/j.jconrel.2016.05.048. PubMed DOI

Riabtseva A., Kaberov L.I., Noirez L., Ryukhtin V., Nardin C., Verbraeken B., Hoogenboom R., Stepanek P., Filippov S.K. Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles. Eur. Polym. J. 2018;99:518–527. doi: 10.1016/j.eurpolymj.2018.01.007. DOI

Ďorďovič V., Verbraeken B., Hogenboom R., Kereïche S., Matějíček P., Uchman M. Tuning of Thermoresponsivity of a Poly(2-alkyl-2-oxazoline) Block Copolymer by Interaction with Surface-Active and Chaotropic Metallacarborane Anion. Chem. An Asian J. 2018;13:838–845. doi: 10.1002/asia.201701720. PubMed DOI

Takahashi R., Sato T., Terao K., Qiu X.P., Winnik F.M. Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules. 2012;45:6111–6119. doi: 10.1021/ma300969w. DOI

Yu S.-H., Cölfen H., Hartmann J., Antonietti M. Biomimetic Crystallization of Calcium Carbonate Spherules with Controlled Surface Structures and Sizes by Double-Hydrophilic Block Copolymers. Adv. Funct. Mater. 2002;12:541–545. doi: 10.1002/1616-3028(20020805)12:8<541::AID-ADFM541>3.0.CO;2-3. DOI

Oleszko-Torbus N., Utrata-Wesołek A., Bochenek M., Lipowska-Kur D., Dworak A., Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym. Chem. 2019;11:15–33. doi: 10.1039/C9PY01316D. DOI

Rasenack N., Müller B.W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002;19:1894–1900. doi: 10.1023/A:1021410028371. PubMed DOI

Lin K., Wu C., Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014;10:4071–4102. doi: 10.1016/j.actbio.2014.06.017. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...