The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors

. 2018 Jul 24 ; 8 (1) : 11132. [epub] 20180724

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30042483
Odkazy

PubMed 30042483
PubMed Central PMC6057956
DOI 10.1038/s41598-018-29459-7
PII: 10.1038/s41598-018-29459-7
Knihovny.cz E-zdroje

Zika virus is a global health threat due to significantly elevated risk of fetus malformations in infected pregnant women. Currently, neither an effective therapy nor a prophylactic vaccination is available for clinical use, desperately necessitating novel therapeutics and approaches to obtain them. Here, we present a structural model of the Zika virus RNA-dependent RNA polymerase (ZIKV RdRp) in complex with template and nascent RNAs, Mg2+ ions and accessing nucleoside triphosphate. The model allowed for docking studies aimed at effective pre-screening of potential inhibitors of ZIKV RdRp. Applicability of the structural model for docking studies was illustrated with the NITD008 artificial nucleotide that is known to effectively inhibit the function of the ZIKV RdRp. The ZIKV RdRp - RNA structural model is provided for all possible variations of the nascent RNA bases pairs to enhance its general utility in docking and modelling experiments. The developed model makes the rational design of novel nucleosides and nucleotide analogues feasible and thus provides a solid platform for the development of advanced antiviral therapy.

Zobrazit více v PubMed

Gould EA, Solomon T. Pathogenic flaviviruses. Lancet. 2008;371:500–509. doi: 10.1016/S0140-6736(08)60238-X. PubMed DOI

Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1952;46:509–520. doi: 10.1016/0035-9203(52)90042-4. PubMed DOI

Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. The Lancet. Infectious diseases. 2016;16:e119–126. doi: 10.1016/S1473-3099(16)30010-X. PubMed DOI

Beckham JD, Pastula DM, Massey A, Tyler KL. Zika Virus as an Emerging Global Pathogen: Neurological Complications of Zika Virus. JAMA Neurol. 2016;73:875–879. doi: 10.1001/jamaneurol.2016.0800. PubMed DOI PMC

Smith DW, Mackenzie J. Zika virus and Guillain-Barre syndrome: another viral cause to add to the list. Lancet. 2016;387:1486–1488. doi: 10.1016/S0140-6736(16)00564-X. PubMed DOI

Niemeyer B, Niemeyer R, Borges R, Marchiori E. Acute Disseminated Encephalomyelitis Following Zika Virus Infection. Eur Neurol. 2017;77:45–46. doi: 10.1159/000453396. PubMed DOI

Soares CN, et al. Fatal encephalitis associated with Zika virus infection in an adult. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2016;83:63–65. doi: 10.1016/j.jcv.2016.08.297. PubMed DOI

Mecharles S, et al. Acute myelitis due to Zika virus infection. Lancet. 2016;387:1481–1481. doi: 10.1016/S0140-6736(16)00644-9. PubMed DOI

Carteaux G, et al. Zika Virus Associated with Meningoencephalitis. The New England journal of medicine. 2016;374:1595–1596. doi: 10.1056/NEJMc1602964. PubMed DOI

Azevedo RS, et al. Zika virus epidemic in Brazil. I. Fatal disease in adults: Clinical and laboratorial aspects. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2016;85:56–64. doi: 10.1016/j.jcv.2016.10.024. PubMed DOI PMC

Bogoch II, et al. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016;387:335–336. doi: 10.1016/S0140-6736(16)00080-5. PubMed DOI PMC

Lindenbach BD, Rice CM. Molecular biology of flaviviruses. Advances in virus research. 2003;59:23–61. doi: 10.1016/S0065-3527(03)59002-9. PubMed DOI

Zhang Z, et al. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science. 2016;354:1597–1600. doi: 10.1126/science.aai9309. PubMed DOI

Lescar, J., Lim, S. P. & Shi, P.-Y. Structure and Function of the Flavivirus NS5 Protein. Molecular Virology and Control of Flaviviruses 101–117 (2012).

Upadhyay AK, et al. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5. Acta Crystallogr F Struct Biol Commun. 2017;73:116–122. doi: 10.1107/S2053230X17001601. PubMed DOI PMC

Dong HP, Zhang B, Shi PY. Flavivirus methyltransferase: A novel antiviral target. Antiviral Research. 2008;80:1–10. doi: 10.1016/j.antiviral.2008.05.003. PubMed DOI PMC

Caillet-Saguy C, Lim SP, Shi PY, Lescar J, Bressanelli S. Polymerases of hepatitis C viruses and flaviviruses: structural and mechanistic insights and drug development. Antiviral research. 2014;105:8–16. doi: 10.1016/j.antiviral.2014.02.006. PubMed DOI

Malet H, et al. The flavivirus polymerase as a target for drug discovery. Antiviral research. 2008;80:23–35. doi: 10.1016/j.antiviral.2008.06.007. PubMed DOI

Eyer L, et al. Nucleoside Inhibitors of Zika Virus. The Journal of infectious diseases. 2016;214:707–711. doi: 10.1093/infdis/jiw226. PubMed DOI

Hercik K, et al. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral research. 2017;137:131–133. doi: 10.1016/j.antiviral.2016.11.020. PubMed DOI

Hercik K, Brynda J, Nencka R, Boura E. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Archives of virology. 2017;162:2091–2096. doi: 10.1007/s00705-017-3345-x. PubMed DOI

Zhang C, et al. Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design. Biochemical and biophysical research communications. 2016 PubMed

Godoy AS, et al. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Nature communications. 2017;8:14764. doi: 10.1038/ncomms14764. PubMed DOI PMC

Zhao B, et al. Structure and function of the Zika virus full-length NS5 protein. Nature communications. 2017;8:14762. doi: 10.1038/ncomms14762. PubMed DOI PMC

Yin Z, et al. N-Sulfonylanthranilic Acid Derivatives as Allosteric Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase. Journal of Medicinal Chemistry. 2009;52:7934–7937. doi: 10.1021/jm901044z. PubMed DOI

Yap TL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol. 2007;81:4753–4765. doi: 10.1128/JVI.02283-06. PubMed DOI PMC

Appleby TC, et al. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science. 2015;347:771–775. doi: 10.1126/science.1259210. PubMed DOI

Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics. 2006;7:339. doi: 10.1186/1471-2105-7-339. PubMed DOI PMC

Pettersen EF, et al. UCSF Chimera–a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Zamyatkin DF, Parra F, Machin A, Grochulski P, Ng KK. Binding of 2′-amino-2′-deoxycytidine-5′-triphosphate to norovirus polymerase induces rearrangement of the active site. Journal of molecular biology. 2009;390:10–16. doi: 10.1016/j.jmb.2009.04.069. PubMed DOI

Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pK(a) values. Proteins-Structure Function and Bioinformatics. 2005;61:704–721. doi: 10.1002/prot.20660. PubMed DOI

Maestro, v. 9.3, (Schrödinger, LLC: New York, 2013).

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of Simple Potential Functions For Simulating Liquid Water. Journal of Chemical Physics. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Desmond Molecular Dynamics System,  v. 3.1, (D. E. Shaw Research: New York, 2012).

Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Jerabek P, Florian J, Stiborova M, Martinek V. Flexible docking-based molecular dynamics/steered molecular dynamics calculations of protein-protein contacts in a complex of cytochrome P450 1A2 with cytochrome b5. Biochemistry. 2014;53:6695–6705. doi: 10.1021/bi500814t. PubMed DOI

Genna V, Vidossich P, Ippoliti E, Carloni P, De Vivo M. A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. Journal of the American Chemical Society. 2016;138:14592–14598. doi: 10.1021/jacs.6b05475. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical review letters. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Wadt WR, Hay PJ. Abinitio Effective Core Potentials for Molecular Calculations - Potentials for Main Group Elements Na to Bi. Journal of Chemical Physics. 1985;82:284–298. doi: 10.1063/1.448800. DOI

Schlegel HB. Estimating the Hessian for Gradient-Type Geometry Optimizations. Theor Chim Acta. 1984;66:333–340. doi: 10.1007/BF00554788. DOI

Baumlova A, et al. The crystal structure of the phosphatidylinositol 4‐kinase IIα. EMBO reports. 2014;15:1085–1092. doi: 10.15252/embr.201438841. PubMed DOI PMC

Klima, M. et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Scientific Reports6 23641 10.1038/srep23641http://www.nature.com/articles/srep23641#supplementary-information (2016). PubMed PMC

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular reproduction and development. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC

Morris GM, et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Bochevarov AD, et al. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem. 2013;113:2110–2142. doi: 10.1002/qua.24481. DOI

Bayly CI, Cieplak P, Cornell WD, Kollman PA. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Deriving Atomic Charges - The Resp Model. Journal of Physical Chemistry. 1993;97:10269–10280. doi: 10.1021/j100142a004. DOI

Becke AD. Density-Functional Thermochemistry .3. The Role of Exact Exchange. Journal of Chemical Physics. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee CT, Yang WT, Parr RG. Development of The Colle-Salvetti Correlation-Energy Formula Into a Functional of The Electron-Density. Physical Review B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-Consistent Molecular-Orbital Methods .12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. Journal of Chemical Physics56, 2257−+ 10.1063/1.1677527 (1972).

Harihara P, Pople JA. Influence of Polarization Functions on Molecular-Orbital Hydrogenation Energies. Theoretica Chimica Acta. 1973;28:213–222. doi: 10.1007/BF00533485. DOI

Frisch, M. J. et al., Inc.: Wallingford, CT,. Gaussian 09, revision D.01 (2013).

Case, D. A. et al. AMBER (2016).

Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics13210.1063/1.3382344 (2010). PubMed

Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chemical Reviews. 2005;105:2999–3093. doi: 10.1021/cr9904009. PubMed DOI

Trott O, Olson AJ. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry. 2010;31:455–461. PubMed PMC

Mejdrova I, et al. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase III beta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. Journal of Medicinal Chemistry. 2017;60:100–118. doi: 10.1021/acs.jmedchem.6b01465. PubMed DOI

Mejdrová I, et al. Highly Selective Phosphatidylinositol 4-Kinase III beta Inhibitors and Structural Insight into Their Mode of Action. Journal of Medicinal Chemistry. 2015;58:3767–3793. doi: 10.1021/acs.jmedchem.5b00499. PubMed DOI

Yang Z, et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. Journal of structural biology. 2012;179:269–278. doi: 10.1016/j.jsb.2011.09.006. PubMed DOI PMC

Sychrovsky V, et al. Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Res. 2009;37:7321–7331. doi: 10.1093/nar/gkp783. PubMed DOI PMC

Luo G, et al. De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. Journal of virology. 2000;74:851–863. doi: 10.1128/JVI.74.2.851-863.2000. PubMed DOI PMC

Klvana M, Bren U, Florian J. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases beta and lambda. The journal of physical chemistry. B. 2016;120:13017–13030. doi: 10.1021/acs.jpcb.6b08581. PubMed DOI PMC

Deng, Y. Q. et al. Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Open Forum Infectious Diseases310.1093/ofid/ofw175 (2016). PubMed PMC

Lo MK, Shi P-Y, Chen Y-L, Flint M, Spiropoulou CF. In vitro antiviral activity of adenosine analog NITD008 against tick borne flaviviruses. Antiviral Research. 2016;130:46–49. doi: 10.1016/j.antiviral.2016.03.013. PubMed DOI PMC

Lu G, Gong P. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus. Virus Res. 2017;234:34–43. doi: 10.1016/j.virusres.2017.01.020. PubMed DOI

Flamand A, Delagneau JF, Bussereau F. Rna-Polymerase Activity In Purified Rabies Virions. Journal of General Virology. 1978;40:233–238. doi: 10.1099/0022-1317-40-1-233. PubMed DOI

Yang W, Lee JY, Nowotny M. Making and breaking nucleic acids: Two-Mg2+ -ion catalysis and substrate specificity. Molecular Cell. 2006;22:5–13. doi: 10.1016/j.molcel.2006.03.013. PubMed DOI

Sholders AJ, Peersen OB. Distinct Conformations of a Putative Translocation Element in Poliovirus Polymerase. Journal of Molecular Biology. 2014;426:1407–1419. doi: 10.1016/j.jmb.2013.12.031. PubMed DOI PMC

Wu J, Liu W, Gong P. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family. International Journal of Molecular Sciences. 2015;16:12943–12957. doi: 10.3390/ijms160612943. PubMed DOI PMC

Hurley JH, Boura E, Carlson LA, Rozycki B. Membrane budding. Cell. 2010;143:875–887. doi: 10.1016/j.cell.2010.11.030. PubMed DOI PMC

Boura E, Hurley JH. Structural basis for membrane targeting by the MVB12-associated beta-prism domain of the human ESCRT-I MVB12 subunit. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:1901–1906. doi: 10.1073/pnas.1117597109. PubMed DOI PMC

Hsu NY, et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 2010;141:799–811. doi: 10.1016/j.cell.2010.03.050. PubMed DOI PMC

Dubankova A, Humpolickova J, Klima M, Boura E. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D (pol) Scientific reports. 2017;7:17309. doi: 10.1038/s41598-017-17621-6. PubMed DOI PMC

Yin Z, et al. An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:20435–20439. doi: 10.1073/pnas.0907010106. PubMed DOI PMC

Chen DL, et al. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins-Structure Function and Bioinformatics. 2007;67:593–605. doi: 10.1002/prot.21249. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...