Field evaluation of a 0.005% fipronil bait, orally administered to Rhombomys opimus, for control of fleas (Siphonaptera: Pulicidae) and phlebotomine sand flies (Diptera: Psychodidae) in the Central Asian Republic of Kazakhstan
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu hodnotící studie, časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30044788
PubMed Central
PMC6059381
DOI
10.1371/journal.pntd.0006630
PII: PNTD-D-18-00279
Knihovny.cz E-zdroje
- MeSH
- dezinsekce metody MeSH
- Gerbillinae parazitologie fyziologie MeSH
- infekce přenášené vektorem MeSH
- infestace blechami parazitologie prevence a kontrola veterinární MeSH
- insekticidy aplikace a dávkování MeSH
- Psychodidae účinky léků fyziologie MeSH
- pyrazoly aplikace a dávkování MeSH
- Siphonaptera účinky léků fyziologie MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Kazachstán MeSH
- Názvy látek
- fipronil MeSH Prohlížeč
- insekticidy MeSH
- pyrazoly MeSH
Plague (Yersinia pestis) and zoonotic cutaneous leishmaniasis (Leishmania major) are two rodent-associated diseases which are vectored by fleas and phlebotomine sand flies, respectively. In Central Asia, the great gerbil (Rhombomys opimus) serves as the primary reservoir for both diseases in most natural foci. The systemic insecticide fipronil has been previously shown to be highly effective in controlling fleas and sand flies. However, the impact of a fipronil-based rodent bait, on flea and sand fly abundance, has never been reported in Central Asia. A field trial was conducted in southeastern Kazakhstan to evaluate the efficacy of a 0.005% fipronil bait, applied to gerbil burrows for oral uptake, in reducing Xenopsylla spp. flea and Phlebotomus spp. sand fly abundance. All active gerbil burrows within the treated area were presented with ~120 g of 0.005% fipronil grain bait twice during late spring/early summer (June 16, June 21). In total, 120 occupied and 14 visited gerbil colonies were surveyed and treated, and the resulting application rate was minimal (~0.006 mg fipronil/m2). The bait resulted in 100% reduction in Xenopsylla spp. flea abundance at 80-days post-treatment. Gravid sand flies were reduced ~72% and 100% during treatment and at week-3 post-treatment, respectively. However, noticeable sand fly reduction did not occur after week-3 and results suggest environmental factors also influenced abundance significantly. In conclusion, fipronil bait, applied in southeastern Kazakhstan, has the potential to reduce or potentially eliminate Xenopsylla spp. fleas if applied at least every 80-days, but may need to be applied at higher frequency to significantly reduce the oviposition rate of Phlebotomus spp. sand flies. Fipronil-based bait may provide a means of controlling blood-feeding vectors, subsequently reducing disease risk, in Central Asia and other affected regions globally.
Department of Parasitology Charles University Prague Czech Republic
Genesis Laboratories Inc Wellington Colorado United States of America
M Aikimbaev's Kazakh Science Centre for Quarantine of Zoonotic Diseases Almaty Kazakhstan
Zobrazit více v PubMed
Gubler DJ. Insects in Disease Transmission In: Strickland GT, editor. Hunter tropical medicine. 7th ed Philadelphia, PA: W.B. Saunders; 1991. pp. 981–1000.
Gubler DJ. Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis. 1998;4: 442–50. 10.3201/eid0403.980326 PubMed DOI PMC
WHO. A global brief on vector-borne diseases. World Heal Organ; 2014; 9. doi:WHO/DCO/WHD/2014.1
Begon M, Klassovskiy N, Ageyev V, Suleimenov B, Atshabar B, Bennett M. Epizootiologic parameters for plague in Kazakhstan. Emerg Infect Dis. 2006;12: 268–273. 10.3201/eid1202.050651 PubMed DOI PMC
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7 10.1371/journal.pone.0035671 PubMed DOI PMC
WHO. Plague: Fact Sheet. In: World Health organization [Internet]. 2017. Available: http://www.who.int/en/news-room/fact-sheets/detail/plague
CDC. Plague: History. In: Centers for Disease Control and Prevention [Internet]. 2015. Available: https://www.cdc.gov/plague/history/index.html
Perry RD, Fetherston JD. Yersinia perstis—Etiologic agent of plague. Clin Microbiol Rev. 1997;10: 35–66. PubMed PMC
Matchett MR, Biggins DE, Carlson V, Powell B, Rocke T. Enzootic Plague Reduces Black-Footed Ferret (Mustela nigripes) Survival in Montana. Vector-Borne Zoonotic Dis. 2010;10: 27–35. 10.1089/vbz.2009.0053 PubMed DOI
Roelle JE, Godbey JL, Biggins DE. Recovery of the Black-footed Ferret: Progress and Continuing Challenges. Proc Symp Status Black-footed Ferret Its Habitat, Fort Collins, Color. 2005; 288 p.
WHO. Plague in China. In: World Health organization; 2009.
WHO. Weekly epidemiological record: Plague around the World, 2010–2015. World Heal Organ; 2016; 89–104. 10.1016/j.actatropica.2012.04.013 DOI
Aikimbajev A, Meka-Mechenko T, Temiralieva G, Bekenov J, Zaurbek S, Kaljan K, et al. Plague peculiarities in Kazakhstan at the present time. Przegl Epidemiol. 2003;57: 593–598. PubMed
Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, et al. Plague: Past, present, and future. PLoS Med. 2008;5: 0009–0013. 10.1371/journal.pmed.0050003 PubMed DOI PMC
WHO. Leishmaniasis: Cutaneous leishmaniasis. In: World Health organization [Internet]. 2018. Available: http://www.who.int/leishmaniasis/cutaneous_leishmaniasis/en/
CDC. Parasites-Leishmaniasis: Epidemiology and Risk Factors. In: Centers for Disease Control and Prevention; [Internet]. 2013. Available: https://www.cdc.gov/parasites/leishmaniasis/epi.html
Coleman RE, Hochberg LP, Swanson KI, Lee JS, Mcavin JC, Moulton JK, et al. Impact of Phlebotomine Sand Flies on U.S. Military Operations at Tallil Air Base, Iraq: 4. Detection and Identification of Leishmania Parasites in Sand Flies. J Med Entomol. 2009;46: 649–663. 10.1603/033.046.0333 PubMed DOI
Burkett DA, Cope SE, Strickman DA, White GB. The Deployed Warfighter Protection (DWFP) research program: developing new public health pesticides, application technologies, and repellent systems. J Integr Pest Manag. 2013;4: 1–7. 10.1603/IPM11024 DOI
Warburg A, Faiman R. Research priorities for the control of phlebotomine sand flies. 2011; 10–16. PubMed
Strelkova MV, Shurkhal AV, Kellina OI, Eliseev LN, Evans DA, Peters W, Chapman CJ, Leblancq SM VEG. A new species of Leishmania isolated from the great gerbil Rhombomys opimus. Parasitology. 1990;101: 327–335. PubMed
WHO. WHO: Weekly epidemiological record: Global leishmaniasis update, 2006–2015, a turning point in leishmaniasis surveillance. World Heal Organ. 2017;92: 557–572. 10.1186/1750-9378-2-15.Voir PubMed DOI
Utepbergenova GA, Medetov ZB, Mamikova KU, Ajapbergenova GS. The prevalence of zoonotic cutaneous leishmaniasis in Southern Kazakhstan. Sib Med J. 2008;82.
Gage KL, Kosoy MY. Natural History of Plague: Perspectives from more than a Century of Research. Annu Rev Entomol. 2005;50: 505–28. 10.1146/annurev.ento.50.071803.130337 PubMed DOI
Oshaghi MA, Rassi Y, Tajedin L, Abai MR, Akhavan AA, Enayati A, et al. Mitochondrial DNA diversity in the populations of great gerbils, Rhombomys opimus, the main reservoir of cutaneous leishmaniasis. Acta Trop. Elsevier B.V.; 2011;119: 165–171. 10.1016/j.actatropica.2011.05.010 PubMed DOI
Guidelines. Guidelines for the prevention of plague in the Central Asian desert foci. Alma-Ata. 1992;
Naumov N, Lobachev V. Ecology of Desert Rodents of the U.S.S.R. (Jerboas and Gerbils) In: Prakash I, Ghosh PK, editors. Rodents in Desert Environments. Springer; Netherlands; 1975. pp. 465–624.
Addink EA, De Jong SM, Davis SA, Dubyanskiy V, Burdelov LA, Leirs H. The use of high-resolution remote sensing for plague surveillance in Kazakhstan. Remote Sens Environ. Elsevier Inc.; 2010;114: 674–681. 10.1016/j.rse.2009.11.015 DOI
Burdelov LA. About the trophic use of the territory by great gerbil in various biotopes of the North-Western Pre-Aral and Northern Ustyurt. Moscow-Nauka; 1978; 119–121.
Dubrovsky YA. Gerbils and natural foci of cutaneous leishmaniasis. Moscow-Nauka; 1978; 184.
Lobachev VS. Features of the use of burrows-colonies by great gerbils. Bull Moscow Soc Nat. 1967;72: 21–28.
Protopopyan MG, Medvedev SI, Medvedevkovsky VI, Berberov G, Rekov YI. Materials for the study of the structure of burial biocenosis of great gerbil (Rhombomys opimus Licht.) in the natural foci of plague of the Ural-Emba interfluve. Parasitology. 1975;9.
Davis S, Begon M, De Bruyn L, Ageyev VS, Klassovskly NL, Pole SB, et al. Predictive Thresholds for Plague in Kazakhstan. Science (80-). 2004;304: 736–738. 10.1126/science.1095854 PubMed DOI
Eisen RJ, Wilder AP, Bearden SW, Montenieri J a., Gage KL. Early-Phase Transmission of Yersinia pestis by Unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) Is as Efficient as Transmission by Blocked Fleas. J Med Entomol. 2007;44: 678–682. 10.1603/0022-2585(2007)44[678:ETOYPB]2.0.CO;2 PubMed DOI
Park S, Chan K-S, Viljugrein H, Nekrassova L, Suleimenov B, Ageyev VS, et al. Statistical analysis of the dynamics of antibody loss to a disease-causing agent: plague in natural populations of great gerbils as an example. J R Soc Interface. 2007;4: 57–64. 10.1098/rsif.2006.0160 PubMed DOI PMC
Parvizi P, Ready PD. Nested PCRs and sequencing of nuclear ITS-rDNA fragments detect three Leishmania species of gerbils in sandflies from Iranian foci of zoonotic cutaneous leishmaniasis. Trop Med Int Heal. 2008;13: 1159–1171. 10.1111/j.1365-3156.2008.02121.x PubMed DOI
Rassi Y, Oshaghi MA, Azani SM, Abaie MR, Rafizadeh S, Mohebai M, et al. Molecular Detection of Leishmania Infection Due to Leishmania major and Leishmania turanica in the Vectors and Reservoir Host in Iran. Vector-Borne Zoonotic Dis. 2011;11: 145–150. 10.1089/vbz.2009.0167 PubMed DOI
WHO. Indoor residual spraying: an operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination. World Heal Organ. 2015; 4–6. Available: http://www.who.int/iris/handle/10665/177242
Poché DM, Garlapati RB, Mukherjee S, Torres-Poché Z, Hasker E, Rahman T, et al. Bionomics of Phlebotomus argentipes in villages in Bihar, India with insights into efficacy of IRS-based control measures. PLoS Negl Trop Dis. 2018;12: 1–20. 10.1371/journal.pntd.0006168 PubMed DOI PMC
Seery DB, Biggins DE, Montenieri JA, Enscore RE, Tanda DT, Gage KL. Treatment of black-tailed prairie dog burrows with deltamethrin to control fleas (Insecta: Siphonaptera) and plague. J Med Entomol. 2003;40: 718–722. 10.1603/0022-2585-40.5.718 PubMed DOI
Tripp DW, Streich SP, Sack DA, Martin DJ, Griffin KA, Miller MW. Season of Deltamethrin Application Affects Flea and Plague Control in White-Tailed Prairie Dog (Cynomys leucurus) Colonies, Colorado, USA. J Wildl Dis. 2016;52: 553–561. 10.7589/2015-10-290 PubMed DOI
Beard ML, Rose ST, Barnes AM, Montenieri JA. Control of Oropsylla hirsuta, a plague vector, by treatment of prairie dog burrows with 0.5% permethrin dust. J Med Entomol. 1992;29: 25–29. 10.1093/jmedent/29.1.25 PubMed DOI
Dinsmore SJ. Mountain Plover responses to deltamethrin treatments on prairie dog colonies in Montana. Ecotoxicology. 2013;22: 415–424. 10.1007/s10646-012-1035-8 PubMed DOI
Boyer S, Miarinjara A, Elissa N. Xenopsylla cheopis (Siphonaptera: Pulicidae) Susceptibility to deltamethrin in Madagascar. PLoS One. 2014;9: 1–7. 10.1371/journal.pone.0111998 PubMed DOI PMC
Singh RK, Mittal PK, Dhiman RC. Insecticide susceptibility status of Phlebotomus argentipes, a vector of visceral leishmaniasis in different foci in three states of India. J Vector Borne Dis. 2012;49: 254–257. PubMed
Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB. Ion channels: Molecular targets of neuroactive insecticides. Invertebr Neurosci. 2005;5: 119–133. 10.1007/s10158-005-0004-9 PubMed DOI
EPA. New Pesticide Fact Sheet: Fipronil [Internet]. 1996. pp. 1–10. Available: https://nepis.epa.gov/Exe/ZyNET.exe/P1001KCY.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=
Caboni P, Sammelson RE, Casida JE. Phenylpyrazole Insecticide Photochemistry, Metabolism, and GABAergic Action: Ethiprole Compared with Fipronil. J Agric Food Chem. 2003;51: 7055–7061. 10.1021/jf030439l PubMed DOI
Ingenloff K, Garlapati R, Poché D, Singh MI, Remmers JL, Poché RM. Feed-through insecticides for the control of the sand fly Phlebotomus argentipes. Med Vet Entomol. 2013;27: 10–18. 10.1111/j.1365-2915.2012.00995.x PubMed DOI
Derbali M, Polyakova L, Boujaama A, Burruss D, Cherni S, Barhoumi W, et al. Laboratory and field evaluation of rodent bait treated with fipronil for feed through and systemic control of Phlebotomus papatasi. Acta Trop. Elsevier B.V.; 2014;135: 27–32. 10.1016/j.actatropica.2014.03.013 PubMed DOI
Poché RM, Garlapati R, Singh MI, Poché DM. Evaluation of fipronil oral dosing to cattle for control of adult and larval sand flies under controlled conditions. J Med Entomol. 2013;50: 833–7. 10.1603/ME12259 PubMed DOI
Poché RM, Burruss D, Polyakova L, Poché DM, Garlapati RB. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar J. BioMed Central; 2015;14: 351 10.1186/s12936-015-0883-0 PubMed DOI PMC
Poché RM, Githaka N, van Gool F, Kading RC, Hartman D, Polyakova L, et al. Preliminary efficacy investigations of oral fipronil against Anopheles arabiensis when administered to Zebu cattle (Bos indicus) under field conditions. Acta Trop. Elsevier; 2017;176: 126–133. 10.1016/j.actatropica.2017.07.030 PubMed DOI PMC
Dolan MC, Maupin GO, Schneider BS, Denatale C, Hamon N, Cole C, et al. Control of Immature Ixodes scapularis (Acari: Ixodidae) on Rodent Reservoirs of Borrelia burgdorferi in a Residential Community of Southeastern Connecticut. J Med Entomol. 2004;41: 1043–1054. 10.1603/0022-2585-41.6.1043 PubMed DOI
Borchert JN, Poche RM. Pest control methods. USA; US 7,943,160 B2, 2011.
Poché DM, Hartman D, Polyakova L, Poché RM. Efficacy of a fipronil bait in reducing the number of fleas (Oropsylla spp.) infesting wild black-tailed prairie dogs. J Vector Ecol. 2017;42: 171–177. 10.1111/jvec.12252 PubMed DOI
Rajonhson DM, Miarinjara A, Rahelinirina S, Rajerison M, Boyer S. Effectiveness of Fipronil as a Systemic Control Agent Against Xenopsylla cheopis (Siphonaptera: Pulicidae) in Madagascar. J Med Entomol. 2017;0: 1–7. 10.1093/jme/tjw200 PubMed DOI
Wilschut LI, Laudisoit A, Hughes NK, Addink EA, de Jong SM, Heesterbeek HAP, et al. Spatial distribution patterns of plague hosts: Point pattern analysis of the burrows of great gerbils in Kazakhstan. J Biogeogr. 2015;42: 1281–1292. 10.1111/jbi.12534 PubMed DOI PMC
Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JAP. The abundance threshold for plague as a critical percolation phenomenon. Nature. 2008;454: 634–637. 10.1038/nature07053 PubMed DOI
Bakanas, Kazakhstan. In: Weather Underground [Internet]. 2018. Available: https://www.wunderground.com/history/wmo/36821/2016/5/1/MonthlyHistory.html?req_city=Bakanas&req_state=ALM&req_statename=Kazakhstan&reqdb.zip=00000&reqdb.magic=1&reqdb.wmo=36821
Davis RM, Cleugh E, Smith RT, Fritz CL, Davis1 RM. Use of a chitin synthesis inhibitor to control fleas on wild rodents important in the maintenance of plague, Yersinia pestis, in California. Source J Vector Ecol. 2008;33: 278–284. 10.3376/1081-1710-33.2.278 PubMed DOI
Killick-Kendrick1 R, Wilkes TJ, Alexander J, Bray1 RS, Rioux J-A, Bailly M. the Distance of Attraction of Cdc Light Traps To Phlebotomine Sandflies. Ann Parasitol Hum Comp. 1985;60: 763–767. 10.1051/parasite/1985606763 DOI
Dinesh DS, Das P, Picado A, Davies C, Speybroeck N, Boelaert M, et al. The efficacy of indoor CDC light traps for collecting the sandfly Phlebotomus argentipes, vector of Leishmania donovani. Med Vet Entomol. 2008;22: 120–123. 10.1111/j.1365-2915.2008.00724.x PubMed DOI
Poché D, Garlapati R, Ingenloff K, Remmers J, Poché R. Bionomics of phlebotomine sand flies from three villages in Bihar, India. Journal of Vector Ecology. 2011. 10.1111/j.1948-7134.2011.00119.x PubMed DOI
Orshan L, Elbaz S, Ben-Ari Y, Akad F, Afik O, Ben-Avi I, et al. Distribution and Dispersal of Phlebotomus papatasi (Diptera: Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev, Israel. PLoS Negl Trop Dis. 2016;10: 1–21. 10.1371/journal.pntd.0004819 PubMed DOI PMC
Ioff I, Mikulin M, Skalon O. Keys to the fleas of central Asia and Kazakhstan. Meditsina, Moscow; 1965.
Perfiliev P. Fauna of USSR, Diptera, Phlebotomidae (sand flies) Moscow and Israel program for scientific translations. Ed. Jerusalem; 1968.
Lewis DJ. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull Br Museum (Natural Hist. 1982;45: 121–209.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3: 294–299. 10.1371/journal.pone.0013102 PubMed DOI
Jachowski DS, Skipper S, Gompper ME. Field evaluation of imidacloprid as a systemic approach to flea control in black-tailed prairie dogs, Cynomys ludovicianus. J Vector Ecol. 2011;36: 100–107. 10.1111/j.1948-7134.2011.00146.x PubMed DOI
Schlein Y, Warburg A. Phytophagy and the feeding cycle of Phlebotomus papatasi (Diptera: Psychodidae) under experimental conditions. J Med Entomol. 1986;23: 11–15. 10.1093/jmedent/23.1.11 PubMed DOI
Elnaiem DA, Ward RD. Response of the sandfly Lutzomyia longipalpis to an oviposition pheromone associated with conspecific eggs. Med Vet Entomol. 1991;5: 87–91. 10.1111/j.1365-2915.1991.tb00525.x PubMed DOI
Henderson CF, Tilton EW. Tests with Acaricides against the Brown Wheat Mite. J Econ Entomol. 1955;48: 157–161. 10.1093/jee/48.2.157 DOI
EPA. Product Performance Test Guidelines: OPPTS 810.3300 Treatments to Control Pests of Humans and Pets. 1998; 1–8.
Fitzpatrick C, Haines A, Bangert M, Farlow A, Hemingway J, Velayudhan R. An economic evaluation of vector control in the age of a dengue vaccine. PLoS Negl Trop Dis. 2017;11: 1–27. 10.1371/journal.pntd.0005785 PubMed DOI PMC
EPA. Product Performance Test Guidelines: OPPTS 810.3400 Mosquito, Black Fly, and Biting Midge (Sand Fly) Treatments. 1998;
Kasap OE, Alten B. Laboratory estimation of degree-day developmental requirements of Phlebotomus papatasi (Diptera: Psychodidae). J Vector Ecol. 2005;30: 328–333. PubMed
Kasap OE, Alten B. Comparative demography of the sand fly Phlebotomus papatasi (Diptera: Psychodidae) at constant temperatures. J Vector Ecol. 2006;31: 378–385. 10.3376/1081-1710(2006)31 PubMed DOI
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27: 123–147. 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Risueño J, Muñoz C, Pérez-Cutillas P, Goyena E, Gonzálvez M, Ortuño M, et al. Understanding Phlebotomus perniciosus abundance in south-east Spain: assessing the role of environmental and anthropic factors. Parasites and Vectors. Parasites & Vectors; 2017;10: 1–12. 10.1186/s13071-017-2135-3 PubMed DOI PMC
Ghosh K, Mukhopadhyay J, Desai MM, Senroy S, Bhattacharya A. Population ecology of Phlebotomus argentipes (Diptera: Psychodidae) in West Bengal, India. J Med Entomol. 1999;36: 588–594. 10.1093/jmedent/36.5.588 PubMed DOI
Kunitsky VN, Gauzshtein DM. Temporal aspects of populations of great gerbil fleas of genera Echidnophaga, Xenopsylla and Coptopsylla in the Southern Balkhash region. Materials of Scientific Conference on natural focality and plague prevention. 1963. pp. 118–120.
Rapoport LP, Melnichuck EA, Orlova LM, Nuriev KK. Comparative analysis of the flea fauna and its epizootic importance in the deserts of Southern Kazakhstan. Entomol Rev. 2010;90: 1003–1013. 10.1134/S0013873810080051 DOI
Killick-Kendrick R, Rioux JA, Bailly M, Guy MW, Wilkes TJ, Guy FM, et al. Ecology of leishmaniasis in the south of France. 20. Dispersal of Phlebotomus ariasi Tonnoir, 1921 as a factor in the spread of visceral leishmaniasis in the Cevennes. Ann Parasitol Hum Comp. 1984;59: 555–572. Available: http://www.ncbi.nlm.nih.gov/pubmed/6524821 PubMed
Doha S, Shehata MG, Said SEL, Sawaf BEL. Dispersal of Phlebotomus Papatasi (Scopoli) and P. Langeroni Nitzulescu in El Hammam,. Ann Parasitol Hum Comp. 1991;66: 69–76. 10.1051/parasite/199166269 PubMed DOI
Kumar V, Rama A, Kesari S, Bhunia GS, Dinesh DS, Das P. Oviposition behaviour of Phlebotomus argentipes—A laboratory-based study. Mem Inst Oswaldo Cruz. 2013;108: 1065–1067. 10.1590/0074-0276130003 PubMed DOI PMC
Mascari TM, Stout RW, Foil LD. Oral Treatment of Rodents With Fipronil for Feed-Through and Systemic Control of Sand Flies (Diptera: Psychodidae). J Med Entomol. 2013;50: 122–125. 10.1603/ME12157 PubMed DOI
Feliciangeli MD. Natural breeding places of phlebotomine sandflies. Med Vet Entomol. 2004;18: 71–80. 10.1111/j.0269-283X.2004.0487.x PubMed DOI
Quate LW. Phlebotomus Sandflies of the Paloich Area in the Sudan (Diptera, Psychodidae). J Med Ent. 1964;1: 213–268. 10.1038/203023b0 PubMed DOI
Coles TB, Dryden MW. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasit Vectors. 2014;7: 8 10.1186/1756-3305-7-8 PubMed DOI PMC
Rust MK, Vetter R, Denholm I, Blagburn B, Williamson MS, Kopp S, et al. Susceptibility of Adult Cat Fleas (Siphonaptera: Pulicidae) to Insecticides and Status of Insecticide Resistance Mutations at the Rdl and Knockdown Resistance Loci. Parasitol Res. 2015;114: 7–18. 10.1007/s00436-015-4512-1 PubMed DOI
Mammals. Mammals of Kazakhstan. Alma-Ata: 1978;1.
Rust MK. Insecticide resistance in fleas. Insects. 2016;7 10.3390/insects7010010 PubMed DOI PMC
Poché DM, Grant WE, Wang H-H. Visceral Leishmaniasis on the Indian Subcontinent: Modelling the Dynamic Relationship between Vector Control Schemes and Vector Life Cycles. PLoS Negl Trop Dis. 2016;10: e0004868 10.1371/journal.pntd.0004868 PubMed DOI PMC
Wilschut LI, Heesterbeek JAP, Begon M, de Jong SM, Ageyev V, Laudisoit A, et al. Detecting plague-host abundance from space: Using a spectral vegetation index to identify occupancy of great gerbil burrows. Int J Appl Earth Obs Geoinf. Elsevier; 2018;64: 249–255. 10.1016/j.jag.2017.09.013 PubMed DOI PMC
Borchert JN, Davis RM, Poché RM. Field efficacy of rodent bait containing the systemic insecticide imidacloprid against the fleas of California ground squirrels. J Vector Ecol. 2009;34: 92–98. 10.1111/j.1948-7134.2009.00011.x PubMed DOI
Smith A, Xie Y, Hoffmann R, Lunde D, MacKinnon J, Wilson D, et al., editors. A Guide to the Mammals of China. Princeton University Press; 2010.
Tingle CCD, Rother JA, Dewhurst CF, Lauer S, King WJ. Fipronil: Environmental Fate, Ecotoxicology, and Human Health Concerns In: Ware GW, editor. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews. New York, NY: Springer New York; 2003. pp. 1–66. 10.1007/978-1-4899-7283-5_1 PubMed DOI
Brennan LA, Hernandez F, Williford D. Northern Bobwhite (Colinus virginianus) In: In The Birds of North America [Internet]. 2014. Available: 10.2173/bna.397 DOI
Newsted JL, Coady KK, Beach SA, Butenhoff JL, Gallagher S, Giesy JP. Effects of perfluorooctane sulfonate on mallard and northern bobwhite quail exposed chronically via the diet. Environ Toxicol Pharmacol. 2007;23: 1–9. 10.1016/j.etap.2006.04.008 PubMed DOI
Oenanthe isabellina. In: Birdlife International The IUCN Red List of Threatened Species [Internet]. 2016. Available: 10.2305/IUCN.UK.2016-3.RLTS.T22710333A87931767.en DOI
Norelius EE, Lockwood JA. The effects of reduced agent-area insecticide treatments for rangeland grasshopper (Orthoptera: Acrididae) control on bird densities. Arch Environ Contam Toxicol. 1999;37: 519–528. 10.1007/s002449900547 PubMed DOI
Shar S, Lkhagvasuren D, Molur S. Rhombomys opimus In: The IUCN Red List of Threatened Species [Internet]. 2016. Available: 10.2305/IUCN.UK.2016-3.RLTS.T19686A22446507.en DOI