fipronil OR C082360 Dotaz Zobrazit nápovědu
Fipronil is an insecticide that is not approved in the European Union in food. In 2017, fipronil was involved in a European health alert due to its presence in fresh hen eggs because of an illicit use in poultry farms, so reliable methods are needed to determine fipronil and its main metabolites in these matrixes. In this work, we report the first approach to the study of fipronil and two metabolites, fipronil-sulfone and fipronil-sulfide by CE. MEKC mode was employed using a solution of 50 mM ammonium perfluorooctanoate pH 9.0 with 10% (v/v) methanol as background electrolyte. The proposed method was combined with a simple sample treatment based on salting-out assisted LLE (SALLE) using acetonitrile as extraction solvent and ammonium sulfate as salt. The SALLE-MEKC-UV method allowed the simultaneous quantification of fipronil and fipronil-sulfone. Validation parameters yielded satisfactory results, with precision, expressed as relative SD, below 14% and recoveries higher than 83%. Limits of detection were 90 µg/kg for fipronil and 150 µg/kg for fipronil-sulfone, so in terms of sensitivity further studies of sample treatments allowing extra preconcentration or the use of more sensitive detection, such as MS, would be needed.
- MeSH
- acetonitrily MeSH
- chromatografie micelární elektrokinetická kapilární metody MeSH
- insekticidy MeSH
- kur domácí MeSH
- limita detekce MeSH
- lineární modely MeSH
- pyrazoly analýza MeSH
- reprodukovatelnost výsledků MeSH
- vejce analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fipronil (FIP) is widely used across the world as a broad-spectrum phenylpyrazole insecticide and veterinary drug. FIP was the insecticide to act by targeting the γ-aminobutyric acid (GABA) receptor and has favorable selective toxicity towards insects rather than mammals. However, because of accidental exposure, incorrect use of FIP or widespread FIP use leading to the contamination of water and soil, there is increasing evidence that FIP could cause a variety of toxic effects on animals and humans, such as neurotoxic, hepatotoxic, nephrotoxic, reproductive, and cytotoxic effects on vertebrate and invertebrates. In the last decade, oxidative stress has been suggested to be involved in the various toxicities induced by FIP. To date, few reviews have addressed the toxicity of FIP in relation to oxidative stress. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a possible mechanism for FIP-induced toxicity as well as metabolism. The present review reports that studies have been conducted to reveal the generation of reactive oxygen species (ROS) and oxidative stress as a result of FIP treatment and have correlated them with various types of toxicity. Furthermore, the metabolism of FIP was also reviewed, and during this process, various CYP450 enzymes were involved and oxidative stress might occur. The roles of various compounds in protecting against FIP-induced toxicity based on their anti-oxidative effects were also summarized to further understand the role of oxidative stress in FIP-induced toxicity.
- MeSH
- insekticidy toxicita MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- oxidace-redukce MeSH
- oxidační stres * MeSH
- pyrazoly toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Transcriptome data were collected in rat dopamine cells exposed to fipronil for 24 h using microarray analysis. Fipronil is a phenylpyrazole pesticide that acts to inhibit gamma-aminobutyric acid (GABA), blocking inhibitory synaptic transmission in the central nervous system. Transcriptome data were subjected to pathway analysis and subnetwork enrichment analysis. We report that 25 µM fipronil altered transcriptional networks in dopamine-synthesizing cells that are associated with Alzheimer's Disease, Huntington Disease, and Schizophrenia. Data analysis revealed that nerve fibre degeneration, nervous system malformations, neurofibrillary tangles, and neuroinflammation were all disease processes related to the transcriptome profile observed in the rat neuronal cells. Other disease networks altered by fipronil exposure at the transcript level were associated with the mitochondria, including mitochondrial DNA depletion syndrome and mitochondrial encephalomyopathies. These data, along with those presented in Souders et al. (2021), are significant because they increase understanding into the molecular mechanisms underlying human disease following exposures to neuroactive pesticides. These data can be reused to inform adverse outcome pathways for neurotoxic pesticides.
- Publikační typ
- časopisecké články MeSH
The phenylpyrazole fipronil is an insecticide that inhibits γ -amino-butyric acid (GABA) ionotropic receptors in the central nervous system. Experimental evidence suggests that fipronil acts as a neurotoxin and it is implicated in neurodegenerative diseases; however, the mechanisms of neurotoxicity are not fully elucidated. The objective of this study was to quantify mechanisms of fipronil-induced neurotoxicity in dopamine cells. Rat primary immortalized mesencephalic dopaminergic cells (N27) were treated with fipronil (0.25 up to 500 μM depending on the assay). We measured endpoints related to mitochondrial bioenergetics, mitophagy, mitochondrial membrane potential, and ATP production in addition to discerning transcriptome responses to the pesticide. Fipronil reduced cell viability at 500 μM after 24 h exposure and caspase 3/7 activity was significant increased after 6 and 12 h by 250 and 500 μM fipronil. Subsequent endpoints were thus assessed at concentrations that were below cytotoxicity. We measured oxidative respiration of N27 cells following a 24 h exposure to one dose of either 0.25, 2.5, 25, or 50 μM fipronil. Oxygen consumption rates (OCR) were not different between vehicle-control and 0.25 or 2.5 μM fipronil treatments, but there was a ∼40-60 % reduction in basal respiration, as well as reduced oligomycin-induced ATP production at 50 μM. The reduction in OCR is hypothesized to be related to lower mitochondrial mass due to mitophagy. Mitochondrial membrane potential was also sensitive to fipronil, and it was compromised at concentrations of 2.5 μM and above. To further elucidate the mechanisms linked to neurotoxicity, we conducted transcriptomics in dopamine cells following treatment with 25 μM fipronil. Fipronil suppressed transcriptional networks associated with mitochondria (damage, depolarization, permeability, and fission), consistent with its effects on mitochondrial membrane potential. Altered gene networks also included those related to Alzheimer disease, inflammatory disease, nerve fiber degeneration, and neurofibrillary tangles. This study clarifies molecular targets of fipronil-induced neurotoxicity and supports, through multiple lines of evidence, that fipronil acts as a mitochondrial toxicant in dopamine cells. This is relevant to neurodegenerative diseases like Parkinson's disease as exposure to fipronil is associated with the progressive loss of nigrostriatal dopaminergic neurons in rodents.
- MeSH
- dopaminergní neurony účinky léků metabolismus MeSH
- insekticidy toxicita MeSH
- krysa rodu rattus MeSH
- membránový potenciál mitochondrií účinky léků fyziologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- pyrazoly toxicita MeSH
- transformované buněčné linie MeSH
- transkriptom účinky léků fyziologie MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plague (Yersinia pestis) and zoonotic cutaneous leishmaniasis (Leishmania major) are two rodent-associated diseases which are vectored by fleas and phlebotomine sand flies, respectively. In Central Asia, the great gerbil (Rhombomys opimus) serves as the primary reservoir for both diseases in most natural foci. The systemic insecticide fipronil has been previously shown to be highly effective in controlling fleas and sand flies. However, the impact of a fipronil-based rodent bait, on flea and sand fly abundance, has never been reported in Central Asia. A field trial was conducted in southeastern Kazakhstan to evaluate the efficacy of a 0.005% fipronil bait, applied to gerbil burrows for oral uptake, in reducing Xenopsylla spp. flea and Phlebotomus spp. sand fly abundance. All active gerbil burrows within the treated area were presented with ~120 g of 0.005% fipronil grain bait twice during late spring/early summer (June 16, June 21). In total, 120 occupied and 14 visited gerbil colonies were surveyed and treated, and the resulting application rate was minimal (~0.006 mg fipronil/m2). The bait resulted in 100% reduction in Xenopsylla spp. flea abundance at 80-days post-treatment. Gravid sand flies were reduced ~72% and 100% during treatment and at week-3 post-treatment, respectively. However, noticeable sand fly reduction did not occur after week-3 and results suggest environmental factors also influenced abundance significantly. In conclusion, fipronil bait, applied in southeastern Kazakhstan, has the potential to reduce or potentially eliminate Xenopsylla spp. fleas if applied at least every 80-days, but may need to be applied at higher frequency to significantly reduce the oviposition rate of Phlebotomus spp. sand flies. Fipronil-based bait may provide a means of controlling blood-feeding vectors, subsequently reducing disease risk, in Central Asia and other affected regions globally.
- MeSH
- dezinsekce metody MeSH
- Gerbillinae parazitologie fyziologie MeSH
- infekce přenášené vektorem MeSH
- infestace blechami parazitologie prevence a kontrola veterinární MeSH
- insekticidy aplikace a dávkování MeSH
- Psychodidae účinky léků fyziologie MeSH
- pyrazoly aplikace a dávkování MeSH
- Siphonaptera účinky léků fyziologie MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Kazachstán MeSH
- Klíčová slova
- otoacariasis, fipronil, strupovka ušní, Otodectes cynotis,
- MeSH
- antiparazitární látky aplikace a dávkování terapeutické užití MeSH
- infestace roztoči diagnóza farmakoterapie terapie MeSH
- kočky MeSH
- nemoci koček parazitologie MeSH
- nemoci psů parazitologie MeSH
- otitis externa * diagnóza etiologie farmakoterapie terapie MeSH
- psi MeSH
- pyrazoly aplikace a dávkování terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- psi MeSH
- zvířata MeSH
Study was focused on the evaluation of pesticide adsorption in soils, as one of the parameters, which are necessary to know when assessing possible groundwater contamination caused by pesticides commonly used in agriculture. Batch sorption tests were performed for 11 selected pesticides and 13 representative soils. The Freundlich equations were used to describe adsorption isotherms. Multiple-linear regressions were used to predict the Freundlich adsorption coefficients from measured soil properties. Resulting functions and a soil map of the Czech Republic were used to generate maps of the coefficient distribution. The multiple linear regressions showed that the K(F) coefficient depended on: (a) combination of OM (organic matter content), pH(KCl) and CEC (cation exchange capacity), or OM, SCS (sorption complex saturation) and salinity (terbuthylazine), (b) combination of OM and pH(KCl), or OM, SCS and salinity (prometryne), (c) combination of OM and pH(KCl), or OM and ρ(z) (metribuzin), (d) combination of OM, CEC and clay content, or clay content, CEC and salinity (hexazinone), (e) combination of OM and pH(KCl), or OM and SCS (metolachlor), (f) OM or combination of OM and CaCO(3) (chlorotoluron), (g) OM (azoxystrobin), (h) combination of OM and pH(KCl) (trifluralin), (i) combination of OM and clay content (fipronil), (j) combination of OM and pH(KCl), or OM, pH(KCl) and CaCO(3) (thiacloprid), (k) combination of OM, pH(KCl) and CEC, or sand content, pH(KCl) and salinity (chlormequat chloride).
- MeSH
- adsorpce MeSH
- látky znečišťující půdu chemie MeSH
- pesticidy chemie MeSH
- půda chemie MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
V Bangladéši očkují Rohingy -- Dobrovolníci proti plicnímu moru na Madagaskaru -- Fipronil je v Německu
- Publikační typ
- novinové články MeSH
- zprávy MeSH