Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
U01 CA063673
NCI NIH HHS - United States
R01 DE013158
NIDCR NIH HHS - United States
P30 CA047904
NCI NIH HHS - United States
K07 CA172294
NCI NIH HHS - United States
C18281/A19169
Cancer Research UK - United Kingdom
P30 CA076292
NCI NIH HHS - United States
P30 CA177558
NCI NIH HHS - United States
19169
Cancer Research UK - United Kingdom
001
World Health Organization - International
UM1 CA167462
NCI NIH HHS - United States
R01 CA111703
NCI NIH HHS - United States
UL1 TR000117
NCATS NIH HHS - United States
R01 CA092039
NCI NIH HHS - United States
U19 CA148127
NCI NIH HHS - United States
RP-PG-0707-10034
Department of Health - United Kingdom
UL1 TR000445
NCATS NIH HHS - United States
R35 CA197449
NCI NIH HHS - United States
P30 ES010126
NIEHS NIH HHS - United States
U01 CA167462
NCI NIH HHS - United States
U19 CA203654
NCI NIH HHS - United States
P20 RR018787
NCRR NIH HHS - United States
R01 CA074386
NCI NIH HHS - United States
MR/L01341X/1
Medical Research Council - United Kingdom
MC_UU_00011/1
Medical Research Council - United Kingdom
P50 CA119997
NCI NIH HHS - United States
P50 CA097190
NCI NIH HHS - United States
R01 CA090731
NCI NIH HHS - United States
G0902313
Medical Research Council - United Kingdom
R01 CA151989
NCI NIH HHS - United States
PubMed
30059977
PubMed Central
PMC6659464
DOI
10.1093/ije/dyy140
PII: 5061128
Knihovny.cz E-zdroje
- Klíčová slova
- Mendelian Randomization, TERT, chromosome 5p15.33, lung cancer, mediation analysis, telomere length,
- MeSH
- adenokarcinom plic epidemiologie MeSH
- dlaždicobuněčné karcinomy hlavy a krku epidemiologie MeSH
- homeostáza telomer genetika MeSH
- leukocyty metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 5 genetika MeSH
- mendelovská randomizace MeSH
- nádory hlavy a krku epidemiologie MeSH
- nádory plic epidemiologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- spinocelulární karcinom epidemiologie MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Evidence from observational studies of telomere length (TL) has been conflicting regarding its direction of association with cancer risk. We investigated the causal relevance of TL for lung and head and neck cancers using Mendelian Randomization (MR) and mediation analyses. METHODS: We developed a novel genetic instrument for TL in chromosome 5p15.33, using variants identified through deep-sequencing, that were genotyped in 2051 cancer-free subjects. Next, we conducted an MR analysis of lung (16 396 cases, 13 013 controls) and head and neck cancer (4415 cases, 5013 controls) using eight genetic instruments for TL. Lastly, the 5p15.33 instrument and distinct 5p15.33 lung cancer risk loci were evaluated using two-sample mediation analysis, to quantify their direct and indirect, telomere-mediated, effects. RESULTS: The multi-allelic 5p15.33 instrument explained 1.49-2.00% of TL variation in our data (p = 2.6 × 10-9). The MR analysis estimated that a 1000 base-pair increase in TL increases risk of lung cancer [odds ratio (OR) = 1.41, 95% confidence interval (CI): 1.20-1.65] and lung adenocarcinoma (OR = 1.92, 95% CI: 1.51-2.22), but not squamous lung carcinoma (OR = 1.04, 95% CI: 0.83-1.29) or head and neck cancers (OR = 0.90, 95% CI: 0.70-1.05). Mediation analysis of the 5p15.33 instrument indicated an absence of direct effects on lung cancer risk (OR = 1.00, 95% CI: 0.95-1.04). Analysis of distinct 5p15.33 susceptibility variants estimated that TL mediates up to 40% of the observed associations with lung cancer risk. CONCLUSIONS: Our findings support a causal role for long telomeres in lung cancer aetiology, particularly for adenocarcinoma, and demonstrate that telomere maintenance partially mediates the lung cancer susceptibility conferred by 5p15.33 loci.
BC Cancer Agency Vancouver BC Canada
College of Pharmacy Washington State University Spokane WA USA
Department of Cancer Epidemiology H Lee Moffitt Cancer Center and Research Institute Tampa FL USA
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Lodz Poland
Department of Epidemiology Geisel School of Medicine Dartmouth College Hanover NH USA
Department of Gastroenterology Radboud University Nijmegen Medical Center Nijmegen The Netherlands
Department of Medicine Massachusetts General Hospital and Harvard Medical School Boston MA USA
Department of Oral Pathology School of Dentistry University of São Paulo São Paulo Brazil
Department of Population Health Sciences Huntsman Cancer Institute Salt Lake City UT USA
Department of Public Health Section for Epidemiology Aarhus University Aarhus Denmark
Dipartimento di Medicina Clinica e Chirurgia Federico 2 University Naples Italy
Division of Epigenomics and Cancer Risk Factors German Cancer Research Center Heidelberg Germany
Epidemiology Program University of Hawaii Cancer Center Honolulu HI USA
Faculdade de Saúde Pública Universidade de São Paulo Brazil
Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
Faculty of Health Sciences Palacky University Olomouc Czech Republic
Faculty of Medicine University of Oviedo and CIBERESP Campus del Cristo Oviedo Spain
Fondazione Policlinico Universitario A Gemelli IRCCS Rome Italia
Fred Hutchinson Cancer Research Center Seattle WA USA
Icahn School of Medicine at Mount Sinai New York NY USA
Institute for Clinical and Translational Research Baylor College of Medicine Houston TX USA
Institute of Medical Statistics and Epidemiology Technical University Munich Germany
International Agency for Research on Cancer Lyon France
Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Ontario Canada
Markey Cancer Center University of Kentucky Lexington KY USA
National Institute of Public Health Bucharest Romania
Ontario Cancer Institute Princess Margaret Cancer Center Toronto Ontario Canada
Radboud Institute for Health Sciences Radboud University Medical Centre Nijmegen The Netherlands
School of Health and Related Research University of Sheffield Sheffield UK
School of Oral and Dental Sciences University of Bristol Bristol UK
Section of Hygiene Institute of Public Health Università Cattolica del Sacro Cuore Rome Italy
Skåne University Hospital Lund University Lund Sweden
The Institute of Applied Health Sciences School of Medicine University of Aberdeen Aberdeen UK
The National Institute of Occupational Health Oslo Norway
Unit of Nutrition and Cancer Catalan Institute of Oncology Barcelona Spain
Zobrazit více v PubMed
Blackburn EH. Structure and function of telomeres. Nature 1991;350:569–73. PubMed
de Lange T. Protection of mammalian telomeres. Oncogene 2002;21:532–40. PubMed
Zhao Y, Sfeir AJ, Zou Y. et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 2009;138:463–75. PubMed PMC
Bodnar AG, Ouellette M, Frolkis M. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349–52. PubMed
Hanahan D, Weinberg RA.. Hallmarks of cancer: the next generation. Cell 2011;144:646–74. PubMed
Wu X, Amos CI, Zhu Y. et al. Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 2003;95:1211–18. PubMed
Bernardes de Jesus B, Blasco MA.. Telomerase at the intersection of cancer and aging. Trends Genet 2013;29:513–20. PubMed PMC
Newbold RF. The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis 2002;17:539–50. PubMed
Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA.. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2011;20:1238–50. PubMed PMC
Prescott J, Wentzensen IM, Savage SA, De Vivo I.. Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res 2012;730:75–84. PubMed PMC
Zhu X, Han W, Xue W. et al. The association between telomere length and cancer risk in population studies. Sci Rep 2016;6:22243. PubMed PMC
Benitez-Buelga C, Sanchez-Barroso L, Gallardo M. et al. Impact of chemotherapy on telomere length in sporadic and familial breast cancer patients. Breast Cancer Res Treat 2015;149:385–94. PubMed PMC
Li P, Hou M, Lou F, Bjorkholm M, Xu D.. Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol 2012;44:1531–40. PubMed
Huzen J, Wong LS, van Veldhuisen DJ. et al. Telomere length loss due to smoking and metabolic traits. J Intern Med 2014;275:155–63. PubMed
Bojesen SE. Telomeres and human health. J Intern Med 2013;274:399–413. PubMed
Davey Smith G, Hemani G.. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human Mol Genet 2014;23:R89–98. PubMed PMC
Levy D, Neuhausen SL, Hunt SC. et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA 2010;107:9293–98. PubMed PMC
Prescott J, Kraft P, Chasman DI. et al. Genome-wide association study of relative telomere length. PLoS One 2011;6:e19635. PubMed PMC
Mangino M, Hwang SJ, Spector TD. et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Human Mol Genet 2012;21:5385–94. PubMed PMC
Pooley KA, Bojesen SE, Weischer M. et al. A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Human Mol Genet 2013;22:5056–64. PubMed PMC
Codd V, Nelson CP, Albrecht E. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 2013;45:422–27, 7e1–2. PubMed PMC
Zhang C, Doherty JA, Burgess S. et al. Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Human Mol Genet 2015;24:5356–66. PubMed PMC
Rode L, Nordestgaard BG, Bojesen SE.. Long telomeres and cancer risk among 95 568 individuals from the general population. Int J Epidemiol 2016;45:1634–43. PubMed
The Telomeres Mendelian Randomization Collaboration. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol 2017;3:636–51. PubMed PMC
Seow WJ, Cawthon RM, Purdue MP. et al. Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res 2014;74:4090–98. PubMed PMC
Lan Q, Cawthon R, Gao Y. et al. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS One 2013;8:e59230. PubMed PMC
Shen M, Cawthon R, Rothman N. et al. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer 2011;73:133–37. PubMed PMC
Sanchez-Espiridion B, Chen M, Chang JY. et al. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res 2014;74:2476–86. PubMed PMC
Jang JS, Choi YY, Lee WK. et al. Telomere length and the risk of lung cancer. Cancer Sci 2008;99:1385–89. PubMed PMC
Sun B, Wang Y, Kota K. et al. Telomere length variation: a potential new telomere biomarker for lung cancer risk. Lung Cancer 2015;88:297–303. PubMed PMC
Zhang Y, Sturgis EM, Dahlstrom KR. et al. Telomere length in peripheral blood lymphocytes contributes to the development of HPV-associated oropharyngeal carcinoma. Cancer Res 2013;73:5996–6003. PubMed PMC
Bau DT, Lippman SM, Xu E. et al. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer 2013;119:4277–83. PubMed PMC
Wang Z, Zhu B, Zhang M. et al. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Mol Genet 2014;23:6616–33. PubMed PMC
Amos CI, Dennis J, Wang Z. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomarkers Prev 2016;26:126–35. PubMed PMC
Lesseur C, Diergaarde B, Olshan AF. et al. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat Genet 2016;48:1544–50. PubMed PMC
Li Y, Byun J, Cai G. et al. FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data. BMC Bioinformatics 2016;17:122. PubMed PMC
Kachuri L, Amos CI, McKay JD. et al. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci. Carcinogenesis 2016;37:96–105. PubMed PMC
Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjaerg-Hansen A, Nordestgaard BG.. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol 2012;32:822–29. PubMed
Burgess S, Thompson SG.. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 2013;42:1134–44. PubMed PMC
Pierce BL, Ahsan H, Vanderweele TJ.. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol 2011;40:740–52. PubMed PMC
Burgess S, Butterworth A, Thompson SG.. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013;37:658–65. PubMed PMC
Thompson JR, Minelli C, Abrams KR, Tobin MD, Riley RD.. Meta-analysis of genetic studies using Mendelian randomization—a multivariate approach. Stat Med 2005;24:2241–54. PubMed
Bowden J, Davey Smith G, Haycock PC, Burgess S.. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 2016;40:304–14. PubMed PMC
VanderWeele TJ. A three-way decomposition of a total effect into direct, indirect, and interactive effects. Epidemiology 2013;24:224–32. PubMed PMC
Valeri L, Vanderweele TJ.. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods 2013;18:137–50. PubMed PMC
VanderWeele TJ. Explanation in Causal Inference: Methods for Mediation and Interaction. New York, NY: Oxford University Press, 2015.
Bojesen SE, Pooley KA, Johnatty SE. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013;45:371–84, 84e1–e2. PubMed PMC
Hartwig FP, Davey Smith G, Bowden J.. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 2017;46:1985–98. PubMed PMC
McKay JD, Hung RJ, Gaborieau V. et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet 2008;40:1404–06. PubMed PMC
Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, Amos CI.. Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis 2011;32:1493–99. PubMed PMC
McKay JD, Hung RJ, Han Y. et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet 2017;49:1126–32. PubMed PMC
Brennan P, Hainaut P, Boffetta P.. Genetics of lung-cancer susceptibility. Lancet Oncol 2011;12:399–408. PubMed
Samet JM, Avila-Tang E, Boffetta P. et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 2009;15:5626–45. PubMed PMC
Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ.. Lung cancer in never smokers—a review. Eur J Cancer 2012;48:1299–311. PubMed
Rafnar T, Sulem P, Stacey SN. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41:221–27. PubMed PMC
Liu Z, Ma H, Wei S, Li G, Sturgis EM, Wei Q.. Telomere length and TERT functional polymorphisms are not associated with risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 2011;20:2642–45. PubMed PMC
Gu Y, Yu C, Miao L. et al. Telomere length, genetic variants and risk of squamous cell carcinoma of the head and neck in Southeast Chinese. Sci Rep 2016;6:20675. PubMed PMC
Shay JW, Bacchetti S.. A survey of telomerase activity in human cancer. Eur J Cancer 1997;33:787–91. PubMed
Bull CF, Mayrhofer G, O'Callaghan NJ. et al. Folate deficiency induces dysfunctional long and short telomeres; both states are associated with hypomethylation and DNA damage in human WIL2-NS cells. Cancer Prev Res 2014;7:128–38. PubMed
Borah S, Xi L, Zaug AJ. et al. Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 2015;347:1006–10. PubMed PMC
Zheng YL, Zhang F, Sun B. et al. Telomerase enzymatic component hTERT shortens long telomeres in human cells. Cell Cycle 2014;13:1765–76. PubMed PMC
Martinez P, Thanasoula M, Munoz P. et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 2009;23:2060–75. PubMed PMC
Rivera T, Haggblom C, Cosconati S, Karlseder J.. A balance between elongation and trimming regulates telomere stability in stem cells. Nat Struct Mol Biol 2017;24:30–39. PubMed PMC
Pai SI, Westra WH.. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu Rev Pathol 2009;4:49–70. PubMed PMC
von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 2000;908:99–110. PubMed
Hohensinner PJ, Goronzy JJ, Weyand CM.. Telomere dysfunction, autoimmunity and aging. Aging Dis 2011;2:524–37. PubMed PMC
Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C.. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol 2015;33:3235–42. PubMed PMC
de Martel C, Plummer M, Vignat J, Franceschi S.. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017;141:664–70. PubMed PMC
Wu YH, Graff RE, Passarelli MN. et al. Identification of pleiotropic cancer susceptibility variants from genome-wide association studies reveals functional characteristics. Cancer Epidemiol Biomarkers Prev 2018;27:75–85. PubMed PMC
Gudmundsson J, Besenbacher S, Sulem P. et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med 2010;2:62ra92. PubMed PMC
Kamatani Y, Matsuda K, Okada Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010;42:210–15. PubMed
Fingerlin TE, Murphy E, Zhang W. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet 2013;45:613–20. PubMed PMC
Low KC, Tergaonkar V.. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 2013;38:426–34. PubMed
Swanson SA, Tiemeier H, Ikram MA, Hernan MA.. Nature as a trialist?: deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology 2017;28:653–59. PubMed PMC
VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P.. Methodological challenges in Mendelian randomization. Epidemiology 2014;25:427–35. PubMed PMC
Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U.. Telomere length in different tissues of elderly patients. Mech Ageing Dev 2000;119:89–99. PubMed
Saferali A, Lee J, Sin DD, Rouhani FN, Brantly ML, Sandford AJ.. Longer telomere length in COPD patients with alpha1-antitrypsin deficiency independent of lung function. PLoS One 2014;9:e95600. PubMed PMC
Daniali L, Benetos A, Susser E. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 2013;4:1597. PubMed PMC
Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G.. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 2016;103:965–78. PubMed PMC
Hartwig FP, Borges MC, Horta BL, Bowden J, Davey Smith G.. Inflammatory biomarkers and risk of schizophrenia: a 2-sample mendelian randomization study. JAMA Psychiatry 2017;74:1226–33. PubMed PMC
Carreras-Torres R, Johansson M, Haycock PC. et al. Obesity, metabolic factors and risk of different histological types of lung cancer: a Mendelian randomization study. PLoS One 2017;12:e0177875. PubMed PMC
Dimitrakopoulou VI, Tsilidis KK, Haycock PC. et al. Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study. BMJ. 2017;359:j4761. PubMed PMC
Richmond RC, Hemani G, Tilling K, Davey Smith G, Relton CL.. Challenges and novel approaches for investigating molecular mediation. Human Mol Genet 2016;25:R149–56. PubMed PMC