Estimating the age of p.(Phe508del) with family studies of geographically distinct European populations and the early spread of cystic fibrosis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK034108
NIDDK NIH HHS - United States
R56 DK034108
NIDDK NIH HHS - United States
DK34108
NIDDK NIH HHS - United States
PubMed
30089827
PubMed Central
PMC6244163
DOI
10.1038/s41431-018-0234-z
PII: 10.1038/s41431-018-0234-z
Knihovny.cz E-zdroje
- MeSH
- cystická fibróza epidemiologie genetika MeSH
- lidé MeSH
- migrace lidstva MeSH
- mikrosatelitní repetice MeSH
- populace genetika MeSH
- protein CFTR genetika MeSH
- rodokmen * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- cystic fibrosis transmembrane conductance regulator delta F508 MeSH Prohlížeč
- protein CFTR MeSH
The high incidence of cystic fibrosis (CF) is due to the frequency of the c.1521_1523delCTT variant in the cystic fibrosis transmembrane conductance regulator (CFTR), but its age and origin are uncertain. This gap limits attempts to shed light on the presumed heterozygote selective advantage that accounts for the variant's high prevalence among Caucasian Europeans and Europe-derived populations. In addition, explaining the nature of heterozygosity to screened individuals with one c.1521_1523delCTT variant is challenging when families raise questions about these issues. To address this gap, we obtained DNA samples from 190 patients bearing c.1521_1523delCTT and their parents residing in geographically distinct European populations plus a Germany-derived population in the USA. We identified microsatellites spanning CFTR and reconstructed haplotypes at 10 loci to estimate the time/age of the most recent common ancestor (tMRCA) with the Estiage program. We found that the age estimates differ between northwestern populations, where the mean tMRCA values vary between 4600 and 4725 years, and the southeastern populations where c.1521_1523delCTT seems to have been introduced only about 1000 years ago. The tMRCA values of Central Europeans were intermediate. Thus, our data resolve a controversy by establishing an early Bronze Age origin of the c.1521_1523delCTT allele and demonstrating its likely spread from northwest to southeast during ancient migrations. Moreover, taking the archeological record into account, our results introduce a novel concept by suggesting that Bell Beaker folk were the probable migrating population responsible for the early dissemination of c.1521_1523delCTT in prehistoric Europe.
Department of Clinical Genetics Our Lady's Children's Hospital Dublin Ireland
Department of Clinical Genetics University Hospital Copenhagen Copenhagen Denmark
Fondation Jean Dausset CEPH Paris France
Laboratoire de Génétique CHU Brest Brest France
Meyer Children Hospital Cystic Fibrosis Center Florence University Florence Italy
Paediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
Pediatrics and Population Health Sciences University of Wisconsin Madison WI USA
Zobrazit více v PubMed
Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245:1073–80. doi: 10.1126/science.2570460. PubMed DOI
Bobadilla JL, Macek Jr M, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606. doi: 10.1002/humu.10041. PubMed DOI
De Braekeleer M, Daigneault J. Spatial distribution of the DF508 mutation in cystic fibrosis: a review. Hum Biol. 1992;64:167–74. PubMed
Lucotte G, Hazout S, De Braekeleer M. Complete map of cystic fibrosis mutation DF508 frequencies in western Europe and correlation between mutation frequencies an incidence of disease. Hum Biol. 1995;67:797–803. PubMed
Farrell P, Le Marechal C, Ferec C, Siker M, Teschler-Nicola M. Discovery of the principal cystic fibrosis mutation (F508del) in ancient DNA from Iron Age Europeans. Nat Preced. 2007;1276:1.
Morral N, Bertranpetit J, Estivill X, et al. The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat Genet. 1994;7:169–75. doi: 10.1038/ng0694-169. PubMed DOI
Fichou Y, Génin E, Le Maréchal C, Audrézet MP, Scotet V, Férec C. Estimating the age of CFTR mutations predominantly found in Brittany (Western France) J Cyst Fibros. 2008;7:168–73. doi: 10.1016/j.jcf.2007.07.009. PubMed DOI
Strom CM, Strom CM, Crossley B, et al. Cystic fibrosis testing 8 years on: lessons learned from carrier screening and sequencing analysis. Genet Med. 2011;13:166–72. doi: 10.1097/GIM.0b013e3181fa24c4. PubMed DOI
Castellani C, Massie J, Sontag M, Southern KW. Newborn screening for cystic fibrosis. Lancet Respir Med. 2016;4:653–61. doi: 10.1016/S2213-2600(16)00053-9. PubMed DOI
Gregg RG, Wilfond BS, Farrell PM, Laxova A, Hassemer D, Mischler EH. The application of DNA analysis in a population screening program for neonatal diagnosis of cystic fibrosis: comparison of screening protocols. Am J Hum Genet. 1993;52:616–26. PubMed PMC
Serre JL, Simon-Bouy B, Mornet E, et al. Studies of RFLP closely linked to the cystic fibrosis locus throughout Europe lead to new considerations in population genetics. Hum Genet. 1990;84:449–54. doi: 10.1007/BF00195818. PubMed DOI
Morral N, Nunes V, Casals T, et al. Microsatellite haplotypes for cystic fibrosis: mutation frameworks and evolutionary tracers. Hum Mol Genet. 1993;2:1015–22. PubMed
Romeo G, Devoto M, Galietta LVJ. Why is the cystic fibrosis gene so frequent? Hum Genet. 1989;84:1–5. doi: 10.1007/BF00210660. PubMed DOI
Rodman DM, Zamudio S. The cystic fibrosis heterozygote--advantage in surviving cholera? Med Hypotheses. 1991;36:253–8. doi: 10.1016/0306-9877(91)90144-N. PubMed DOI
Cuthbert AW, Halstead J, Ratcliff R, Colledge WH, Evans MJ. The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J Physiol. 1995;15:449–54. doi: 10.1113/jphysiol.1995.sp020531. PubMed DOI PMC
Piel FB, Patil AP, Howes RE, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun. 2010;1104:1–7. PubMed PMC
Bitoungui VJ, Pule GD, Hanchard N, Ngogang J, Wonkam A. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa? OMICS. 2015;19:171–9. doi: 10.1089/omi.2014.0134. PubMed DOI PMC
Pauling L, Itano HA, Singer SJ, Wells IC. Sickle cell anemia, a molecular disease. Science. 1949;110:543–8. doi: 10.1126/science.110.2865.543. PubMed DOI
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97. doi: 10.1086/521987. PubMed DOI PMC
Génin E, Tullio-Pelet A, Lyonnet S, Abel L. Estimating the age of rare disease mutations: the example of Triple A syndrome. J Med Genet. 2004;41:445–9. doi: 10.1136/jmg.2003.017962. PubMed DOI PMC
Cunliffe B. Europe between the Oceans. New Haven: Yale University Press; 2008.
Price TD. Europe before Rome. New York: Oxford University Press; 2013.
Cordovado SK, Hendrix M, Greene CN, et al. CFTR mutation analysis and haplotype associations in DNA used for proficiency testing. Mol Genet Metab. 2012;105:249–54. doi: 10.1016/j.ymgme.2011.10.013. PubMed DOI PMC
Lao O, Lu TT, Nothnagel M, et al. Correlation between genetic and geographic structure in Europe. Curr Biol. 2008;18:1241–8. doi: 10.1016/j.cub.2008.07.049. PubMed DOI
Heath SC, Gut IG, Brennan P, et al. Investigation of the fine structure of European populations with applications to disease association studies. Eur J Hum Genet. 2008;16:1413–29. doi: 10.1038/ejhg.2008.210. PubMed DOI
Kaplan NL, Lewis PO, Weir BS. Age of the ΔF508 cystic fibrosis mutation. Nat Genet. 1994;8:216–7. doi: 10.1038/ng1194-216a. PubMed DOI
Allentoft ME, Sikora M, Sjögren KG, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–72. doi: 10.1038/nature14507. PubMed DOI
Müller J, van Willigen S. New radiocarbon evidence for European Bell Beakers and the consequences for the diffusion of the Bell Beaker phenomenon. In: Nicolis F, editors. Bell Beakers today. Pottery, people, culture, symbols in prehistoric Europe (Proceedings of the International Colloquium, Riva del Garda, Trento, Italy); 2001. pp. 59–80.
Olalde S, Brace ME, Allentoft I, et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018;555:190–6. doi: 10.1038/nature25738. PubMed DOI PMC
Price TD, Knipper C, Grupe G, Smrcka V. Strontium isotopes and prehistoric human migration: the Bell Beaker period in central Europe. Eur J Archaeol. 2004;7:9–40. doi: 10.1177/1461957104047992. DOI
Needham S. Transforming Beaker culture in north-west Europe: processes of fusion and fission. Proc Prehist Soc. 2005;71:171–217. doi: 10.1017/S0079497X00001006. DOI
Farrell PM. The prevalence of cystic fibrosis in the European Union. J Cyst Fibros. 2008;7:450–3. doi: 10.1016/j.jcf.2008.03.007. PubMed DOI
Harrison RJ. The Beaker Folk: Copper Age archaeology in in Western Europe. London, UK: Thames and Hudson; 1980.
Poolman EM, Galvani AP. Evaluating candidate agents of selective pressure for cystic fibrosis. J R Soc Interface. 2007;4:91–8. doi: 10.1098/rsif.2006.0154. PubMed DOI PMC