Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
HEC-IRSIP- 2013
Higher Education Commision, Pakistan
PubMed
30090964
DOI
10.1007/s12223-018-0636-x
PII: 10.1007/s12223-018-0636-x
Knihovny.cz E-zdroje
- MeSH
- biofilmy růst a vývoj MeSH
- chlorid hořečnatý farmakologie MeSH
- chlorid vápenatý farmakologie MeSH
- délka genomu MeSH
- DNA virů MeSH
- Enterobacter cloacae virologie MeSH
- genom virový genetika MeSH
- hostitelská specificita MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiální viabilita MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- molekulová hmotnost MeSH
- odpadní voda virologie MeSH
- Podoviridae izolace a purifikace fyziologie ultrastruktura MeSH
- přichycení viru účinky léků MeSH
- teplota MeSH
- virové proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid hořečnatý MeSH
- chlorid vápenatý MeSH
- DNA virů MeSH
- odpadní voda MeSH
- virové proteiny MeSH
Biofilm is involved in a variety of infections, playing a critical role in the chronicity of infections. Enterobacter cloacae is a biofilm-forming and multi-drug-resistant (MDR) nosocomial pathogen leading to significant morbidity and mortality. This study aimed at isolation of a bacteriophage against MDR clinical strain of E. cloacae and its efficacy against bacterial planktonic cells and biofilm. A bacteriophage MJ2 was successfully isolated from wastewater and was characterized. The phage exhibited a wide range of thermal and pH stability and demonstrated considerable adsorption to host bacteria in the presence of CaCl2 or MgCl2. Transmission electron microscopy (TEM) showed MJ2 head as approximately 62 and 54 nm width and length, respectively. It had a short non-contractile tail and was characterized as a member of the family Podoviridae [order Caudovirales]. The phage MJ2 was found to possess 11 structural proteins (12-150 kDa) and a double-stranded DNA genome with an approximate size of 40 kb. The log-phase growth of E. cloacae both in biofilm and suspension was significantly reduced by the phage. The E. cloacae biofilm was formed under different conditions to evaluate the efficacy of MJ2 phage. Variable reduction pattern of E. cloacae biofilm was observed while treating it for 4 h with MJ2, i.e., biofilm under static conditions. The renewed media with intervals of 24, 72, and 120 h showed biomass decline of 2.8-, 3-, and 3.5-log, respectively. Whereas, the bacterial biofilm formed with dynamic conditions with refreshing media after 24, 72, and 120 h demonstrated decline in growth at 2.5-, 2.6-, and 3.3-log, respectively. It was, therefore, concluded that phage MJ2 possessed considerable inhibitory effects on MDR E. cloacae both in planktonic and biofilm forms.
College of Veterinary Sciences and Animal Husbandry Abdul Wali Khan University Mardan Pakistan
Department of Biotechnology Abdul Wali Khan University Mardan 23200 Pakistan
Department of Biotechnology Shaheed Benazir Bhutto University Sheringal Dir Pakistan
Department of Microbiology Abdul Wali Khan University Garden Campus Mardan 23200 Pakistan
Department of Microbiology University of Health Sciences Lahore Pakistan
Zobrazit více v PubMed
Infect Control Hosp Epidemiol. 1999 Sep;20(9):598-603 PubMed
J Bacteriol. 2000 May;182(10):2675-9 PubMed
Appl Environ Microbiol. 2000 Oct;66(10):4193-9 PubMed
J Theor Biol. 2001 Jan 7;208(1):37-48 PubMed
Antimicrob Agents Chemother. 2001 Mar;45(3):649-59 PubMed
Appl Environ Microbiol. 2001 Jun;67(6):2746-53 PubMed
Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S108-15 PubMed
J Hosp Infect. 2001 Nov;49(3):173-82 PubMed
Clin Microbiol Rev. 2002 Apr;15(2):167-93 PubMed
J Bacteriol. 2002 Aug;184(16):4359-68 PubMed
J Clin Microbiol. 2003 Apr;41(4):1687-93 PubMed
J Theor Biol. 2004 Mar 7;227(1):1-11 PubMed
FEMS Microbiol Lett. 2004 Mar 12;232(1):1-6 PubMed
J Hosp Infect. 2004 Sep;58(1):63-77 PubMed
Biofouling. 2004 Jun;20(3):133-8 PubMed
Microb Drug Resist. 2005 Spring;11(1):31-9 PubMed
Res Microbiol. 2005 May;156(4):506-14 PubMed
Clin Orthop Relat Res. 2005 Aug;(437):12-9 PubMed
J Long Term Eff Med Implants. 2005;15(5):467-88 PubMed
J Appl Microbiol. 2006 Feb;100(2):334-42 PubMed
Vet Microbiol. 2007 Sep 20;124(1-2):47-57 PubMed
Lett Appl Microbiol. 2007 Sep;45(3):313-7 PubMed
PLoS Biol. 2008 May 20;6(5):e120 PubMed
Res Microbiol. 2008 Jun;159(5):340-8 PubMed
BMC Biotechnol. 2008 Oct 27;8:79 PubMed
Methods Mol Biol. 2009;501:127-40 PubMed
J Microbiol. 2012 Feb;50(1):175-8 PubMed
J Basic Microbiol. 2014 Aug;54(8):775-80 PubMed
J Basic Microbiol. 2015 Apr;55(4):420-31 PubMed
J Med Microbiol. 2015 Apr;64(Pt 4):454-62 PubMed
Oncotarget. 2017 Oct 4;8(52):90144-90163 PubMed
J Virol. 1974 Jan;13(1):22-7 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Appl Environ Microbiol. 1983 Jun;45(6):1921-31 PubMed
J Infect Dis. 1982 Oct;146(4):479-82 PubMed
Microbiology. 1997 Jan;143 ( Pt 1):179-85 PubMed
Clin Infect Dis. 1997 Feb;24(2):211-5 PubMed
Ann Intern Med. 1997 Aug 15;127(4):275-80 PubMed
Adv Dent Res. 1997 Apr;11(1):160-7 PubMed
Clin Diagn Lab Immunol. 1998 May;5(3):294-8 PubMed
J Clin Microbiol. 1998 Jul;36(7):1846-52 PubMed
Microbiology. 1998 Nov;144 ( Pt 11):3039-47 PubMed