Isolation, characterization, and application of lytic bacteriophages for controlling Enterobacter cloacae complex (ECC) in pasteurized milk and yogurt
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37184760
PubMed Central
PMC10689537
DOI
10.1007/s12223-023-01059-7
PII: 10.1007/s12223-023-01059-7
Knihovny.cz E-resources
- Keywords
- Bacteriophage, Biocontrol, Enterobacter cloacae complex, Milk, Yogurt,
- MeSH
- Bacteriophages * genetics MeSH
- Enterobacter cloacae MeSH
- Yogurt MeSH
- Milk microbiology MeSH
- Refuse Disposal * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Reducing bacterial pathogen contamination not only improves overall global public health but also diminishes food waste and loss. The use of lytic bacteriophages (phages) that infect and kill bacteria could be a beneficial tool for suppressing bacterial growth during dairy products storage time. Four Enterobacter cloacae (E. cloacae) complex isolates which were previously isolated from contaminated dairy products were used to identify lytic phages in wastewater. Phages specific to multi-drug resistant (MDR) E. cloacae complex 6AS1 were isolated from local sewage. Two novel phages vB_EclM-EP1 and vB_EclM-EP2 were identified as myoviral particles and have double-stranded DNA genome. Their host range and lytic capabilities were detected using spot test and efficiency of plating (EOP) against several bacterial isolates. The phages had a latent period of 30 min, and a large burst size of about 100 and 142 PFU/cell for vB_EclM-EP1 and vB_EclM-EP2, respectively. Both phages were viable at pH ranging 5-9 and stable at 70 °C for 60 min. The individual phages and their cocktail preparations (vB_EclM-EP1 and vB_EclM-EP2) reduced and inhibited the growth of E. cloacae complex 6AS1 during challenge test in milk and yogurt samples. These results indicate that the E. cloacae complex-specific phages (vB_EclM-EP1 and vB_EclM-EP2) have a potential application as microbicidal agents in packaged milk and milk derivatives during storage time. In addition, our environment is a rich sources of lytic phages which have potential use in eliminating multidrug-resistant isolates in food industry as well as in biocontrol.
See more in PubMed
Abdel-Hamied MR, Salha GD, Deabes M. Isolation, characterization and antibiotics susceptibility of β-glucuronidase producing Escherichia coli and other enteric bacteria from ground beef. Afr J Biotechnol. 2017;17:29–36. doi: 10.5897/AJB2017.16175. DOI
Abedon ST (2011) Size does matter-distinguishing bacteriophages by genome length (and ‘breadth’). Microbiol Aust 32:95–96. 10.1071/MA11095
Ackermann HW (2009) Phage classification and characterization. In Bacteriophages. Methods and Protocols, Vol. I, Isolation, Characterization, and Interactions (Clokie MRJ, Kropinski AM, eds). Method Mol Biol 501:127–140. Humana Press, Clifton, NJ. 10.1007/978-1-60327-164-6_13 PubMed
Ackermann HW. Bacteriophage electron microscopy. Adv Virus Res. 2012;82:1–32. doi: 10.1016/B978-0-12-394621-8.00017-0. PubMed DOI
Adams MH. Bacteriophages. New York: USA, Interscience Publishers; 1959.
Annavajhala MK, Gomez-Simmonds A, Uhlemann A-C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol. 2019;10:44. doi: 10.3389/fmicb.2019.00044. PubMed DOI PMC
Bacon RT, Belk KE, Sofos JN, Clayton RP, Reagan JO, Smith GC. Microbial populations on animal hides and beef carcasses at different stages of slaughter in plants employing multiple-sequential interventions for decontamination. J Food Prot. 2000;63:1080–1086. doi: 10.4315/0362-028x-63.8.1080. PubMed DOI
Basdew IH, Laing MD. Stress sensitivity assays of bacteriophages associated with Staphylococcus aureus, causal organism of bovine mastitis. African J Microbiol. 2014;8:200–210. doi: 10.5897/AJMR2013.5877. DOI
Bibi Z, Abbas Z, Rehman S. A phage P.E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci Technol. 2016;26:181–188. doi: 10.1080/09583157.2015.1086311. DOI
Bielke L, Higgins S, Donoghue A, Donoghue D, Hargis BM. Salmonella host range of bacteriophages that infect multiple genera. Poult Sci. 2007;86:2536–2540. doi: 10.3382/ps.2007-00250. PubMed DOI
Bigwood T, Hudson JA, Billington C, Carey-Smith GV, Heinemann JA. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 2008;25:400–406. doi: 10.1016/j.fm.2007.11.003. PubMed DOI
Bolourchi N, Giske CG, Nematzadeh S, Mirzaie A, Abhari SS, Solgi H, Badmasti F. Comparative resistome and virulome analysis of clinical NDM-1–producing carbapenem-resistant Enterobacter cloacae complex. J Glob Antimicrob Resist. 2022;28:254–263. doi: 10.1016/j.jgar.2022.01.021. PubMed DOI
Boor KJ, Murphy SC (2005) Microbiology of market milks. In: Robinson RK (ed.): Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products. New Jersey, John Wiley & Sons: 91–122. 10.1002/0471723959.ch3
Brüssow H. Phage therapy: the Escherichia coli experience. Microbiol. 2005;151:2133–2140. doi: 10.1099/mic.0.27849-0. PubMed DOI
Buttimer C, Lucid A, Neve H, Franz C, O’mahony J, Turner D, , et al. Pectobacterium atrosepticum phage vB_PatP_CB5: a member of the proposed genus ‘Phimunavirus’. Viruses. 2018;10:E394. doi: 10.3390/v10080394. PubMed DOI PMC
Capra ML, Quiberoni A, Reinheimer J. Phages of Lactobacillus casei/paracasei: response to environmental factors and interaction with collection and commercial strains. J Appl Microbiol. 2006;100:334–342. doi: 10.1111/j.1365-2672.2005.02767.x. PubMed DOI
Chen CW, Yuan L, Zhang YS, Mgomi FC, Wang Y, Yang ZQ, Jiao XA (2022) Comparison of biological and genomic characteristics of five virulent bacteriophages against Enterobacter hormaechei. Microb Pathog 162:105375. 10.1016/j.micpath.2021.105375 PubMed
Cieślik M, Harhala M, Orwat F, Dąbrowska K, Górski A, Jończyk-Matysiak E (2022) Two newly isolated Enterobacter-specific bacteriophages: biological properties and stability studies. Viruses 14:1518. 10.3390/v14071518 PubMed PMC
CLSI (2018) Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA
Cooney S, Lversen C, Healy B, O'Brien S Fanning S (2011) Enterobacter spp. Elsevier Ltd. 72–80
Cousin MA. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review 1. J Food Prot. 1982;45:172–207. doi: 10.4315/0362-028X-45.2.172. PubMed DOI
Cristobal-Cueto P, García-Quintanilla A, Esteban J, García-Quintanilla M. Phages in food industry biocontrol and bioremediation. Antibiotics. 2021;10:786. doi: 10.3390/antibiotic6AS10070786. PubMed DOI PMC
Davin-Regli A, Masi M, Bialek S, Nicolas-Chanoine MH, Pagès JM. Antimicrobial resistance and drug efflux pumps in Enterobacter and Klebsiella. In: Li X-Z, Elkins CA, Zgurskaya HI, editors. Efflux-mediated drug resistance in bacteria: mechanisms, regulation and clinical implications. Basel, Switzerland: Springer International Publishing; 2016. pp. 281–306.
De Smet J, Hendrix H, Blasdel BG, et al. Pseudomonas predators: understanding and exploiting phage–host interactions. Nat Rev Microbiol. 2017;15:517–530. doi: 10.1038/nrmicro.2017.61. PubMed DOI
Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ (2022) Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 46:fuab048. 10.1093/femsre/fuab048 PubMed PMC
El-Dougdoug NK, Cucic S, Abdelhamid AG, Brovko L, Kropinski AM, Griffiths MW, Anany H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol. 2019;293:60–71. doi: 10.1016/j.ijfoodmicro.01.003. PubMed DOI
Esmael A, Azab E, Gobouri AA, Nasr-Eldin MA, Moustafa MMA, Mohamed SA, Badr OAM, Abdelatty AM. Isolation and characterization of two lytic bacteriophages infecting a multi-drug resistant Salmonella typhimurium and their efficacy to combat salmonellosis in ready-to-use foods. Microorganisms. 2021;9:423. doi: 10.3390/microorganisms9020423. PubMed DOI PMC
Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol. 1980;30:569–584. doi: 10.1099/00207713-30-3-569. DOI
Fernandes R (2009) Microbiology handbook: dairy products. 3rd Ed. Cambridge. R Soc Chem 1–15:182
Frank JF (1997) Milk and dairy products. Food Microbiology – Fundamental and Frontiers (Doyle P, Beuchat R & Montville J, eds), 169–186. ASM Press, Washington, DC
Garcia P, Madera C, Martinez B, Rodriguez A, Suarez JE. Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. J Dairy Sci. 2009;92:3019–3026. doi: 10.3168/jds.2008-1744. PubMed DOI
García-Anaya MC, Sepulveda DR, S´aenz-Mendoza AI, Rios-Velasco C, Zamudio- Flores PB, Acosta-Mu˜niz, CH, Phages as biocontrol agents in dairy products. Trends Food Sci Technol. 2020;95:10–20. doi: 10.1016/j.tifs.2019.10.006. DOI
Hammerl J A, Jäckel C, Alter T, Janzcyk P, Stingl K, Knüver MT et al (2014) Reduction of Campylobacter jejuni in broiler chicken by successive application of group ii and group iii phages. PLoS ONE 9:e114785. 10.1371/journal.pone.0114785 PubMed PMC
Haq IU, Chaudhry WN, Andleeb S, Qadri I. Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol. 2012;63:954–963. doi: 10.1007/s00248-011-9944-2. PubMed DOI
Haryani Y, Tunung R, Chai LC, Lee HY, Tang SY, Son R. Characterization of Enterobacter cloacae isolated from street foods. Asean Food J. 2008;15:57–64.
Hatfull GF. Bacteriophage genomics. Curr Opin Microbiol. 2008;11:447–453. doi: 10.1016/j.mib.2008.09.004. PubMed DOI PMC
Hosseinidoust Z, Olsson AL, Tufenkji N. Going viral: designing bioactive surfaces with bacteriophages. Colloids Surf B Biointerfaces. 2014;124:2–16. doi: 10.1016/j.colsurfb.2014.05.036. PubMed DOI
Hu ZY, Meng XC, Liu F. Isolation and characterisation of lytic bacteriophages against Pseudomonas spp., a novel biological intervention for preventing spoilage of raw milk. Int Dairy J. 2016;55:72–78. doi: 10.1016/j.idairyj.2015.11.011. DOI
Hudson JA, Billington C, Carey-Smith G, Greening G. Bacteriophages as biocontrol agents in food. J Food Prot. 2005;68:426–437. doi: 10.4315/0362-028x-68.2.426. PubMed DOI
Jamal M, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol. 2019;64:101–111. doi: 10.1007/s12223-018-0636-x. PubMed DOI
Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages. Folia Microbiol. 2011;56:191–200. doi: 10.1007/6AS12223-011-0039-8. PubMed DOI PMC
Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M, Mieszkowska A, Wróbel B, Węgrzyn G, Węgrzyn A. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep. 2016;6:34338. doi: 10.1038/srep34338. PubMed DOI PMC
Khan Mirzaei M, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10:e0118557. 10.1371/journal.pone.0118557 PubMed PMC
Khawaja AK, Abbas Z, Rehman US. Isolation and characterization of lytic phages TSE1-3 against Enterobacter cloacae. Open Life Sci. 2016;11:287–292. doi: 10.1515/biol-2016-0038. DOI
Liu S, Tang Y, Wang D, Lin N, Zhou J. Identification and characterization of a new Enterobacter onion bulb decay caused by Lelliottia amnigena in China. Appli Micro Open Access. 2016;2:1000114. doi: 10.4172/2471-9315.1000114. DOI
Lu Z, Pérez-Díaz IM, Hayes JS, Breidt F. Bacteriophages infecting gram-negative bacteria in a commercial cucumber fermentation. Front Microbiol. 2020;11:1306. doi: 10.3389/fmicb.2020.01306. PubMed DOI PMC
Ly-Chatain MH. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol. 2014;5:51. doi: 10.3389/fmicb.2014.00051. PubMed DOI PMC
Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol. 2019;10:574. doi: 10.3389/fmicb.2019.00574. PubMed DOI PMC
Maull KD, Hickey ME, Lee JL (2012) The study and identification of bacterial spoilage species isolated from catfish during refrigerated storage. J Food Process Technol S11–003. 10.4172/2157-7110.6AS11-003
Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 2012;7:887–902. doi: 10.2217/fmb.12.61. PubMed DOI
Mohammed AS, Abdullahi M. Comparative study of microbial quality of hawked nono and packaged yogurt sold in Bida. Spec J Psychol Manag. 2015;1:1–4.
Montso PK, Mlambo V, Ateba CN. Characterization of lytic bacteriophages infecting multidrug-resistant Shiga toxigenic atypical Escherichia coli O177 strains isolated from cattle feces. Front Public Health. 2019;7:355. doi: 10.3389/fpubh.2019.00355. PubMed DOI PMC
Morozova V, Jdeed G, Kozlova Y, Babkin I, Tikunov A, Tikunova NA. New Enterobacter cloacae bacteriophage EC151 encodes the deazaguanine DNA modification pathway and represents a new genus within the Siphoviridae family. Viruses. 2021;13:1372. doi: 10.3390/v13071372. PubMed DOI PMC
Moye Z, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing. Viruses. 2018;10:205. doi: 10.3390/v10040205. PubMed DOI PMC
Mutai IJ, Juma AA, Inyimili MI, Nyachieo A, Nyamache AK (2022) Efficacy of diversely isolated lytic phages against multi-drug resistant Enterobacter cloacae isolates in Kenya. Afr J Lab Med 11:a1673. 10.4102/ajlm.v11i1.1673 PubMed PMC
Nair A, Vyawahare R, Khairnar K. Characterization of a novel, biofilm dispersing, lytic bacteriophage against drug-resistant Enterobacter cloacae. J Appl Microbiol. 2021;132:2721–2732. doi: 10.1111/jam.15420. PubMed DOI
Nale JY, Clokie MR. Preclinical data and safety assessment of phage therapy in humans. Curr Opin Biotechnol. 2021;68:310–317. doi: 10.1016/j.copbio.2021.03.002. PubMed DOI PMC
Nascimento ECD, Sabino MC, Corguinha LDR, Targino BN, Lange CC, Pinto CLO, Pinto PF, Vidigal PMP, Sant'Ana, AS, Hungaro HM (2022) Lytic bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 prevent Pseudomonas fluorescens growth in vitro and the proteolytic-caused spoilage of raw milk during chilled storage. Food Microbiol 101:103892. 10.1016/j.fm.2021.103892 PubMed
Nyenje ME, Odjadjare CE, Tanih NF, Green E, Ndip RN. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: public health implications. Int J Environ Res Public Health. 2012;9:2608–2619. doi: 10.3390/ijerph9082608. PubMed DOI PMC
Othman BA, Askora AA, Awny NM, Abo-Senna ASM. Characterization of virulent bacteriophages for Streptomyces griseoflavus isolated from soil. Pak J Biotechnol. 2008;5:109–119.
Pajunen M, Kiljunen S, Skurnik M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol. 2000;182:5114–5120. doi: 10.1128/jb.182.18.5114-5120.2000. PubMed DOI PMC
Pérez-Díaz IM, Hayes J, Medina E, Webber AM, Butz N, Dickey AN, et al. Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food Microbiol. 2019;77:10–20. doi: 10.1016/j.fm.2018.08.003. PubMed DOI
Rogovski P, Cadamuro RD, da Silva R, de Souza EB, Bonatto C, Viancelli A, Michelon W, Elmahdy EM, Treichel H, Rodríguez-Lázaro D Fongaro G (2021) Uses of bacteriophages as bacterial control tools and environmental safety indicators. Front Microbiol 12:793135. 10.3389/fmicb.2021.793135. PubMed PMC
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3. Cold Spring Harbor Laboratory Press; 2001.
Sillankorva SM, Oliveira H, Azeredo J (2012) Bacteriophages and their role in food safety. Int J Microbiol 863945. 10.1155/2012/863945 PubMed PMC
Sobeih A, Al-Hawary I, Khalifa E, Ebied N (2020) Prevalence of Enterobacteriaceae in raw milk and some dairy products. Kafrelsheikh Vet Med J 18:9–13. 10.21608/KVMJ.2020.39992.1009
Soffer N, Woolston J, Li M, Das C, Sulakvelidze A (2017) Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS ONE 12:e0175256. 10.1371/journal.pone.0175256 PubMed PMC
Sofos JN, Smith GC. Nonacid meat decontamination technologies: model studies and commercial applications. Int J Food Microbiol. 1998;44:171–188. doi: 10.1016/s0168-1605(98)00136-6. PubMed DOI
Stephan R, Van Trappen S, Cleenwerck I, Iversen C, Joosten H, De Vos P, Lehner A. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int J Syst Evol Microbiol. 2008;58:237–241. doi: 10.1099/ijs.0.65427-0. PubMed DOI
Stock I, Grüger T, Wiedemanna B. Natural antibiotic susceptibility of strains of the Enterobacter cloacae complex. Int J of Antimicrob Agents. 2001;18:537–545. doi: 10.1016/s0924-8579(01)00463-0. PubMed DOI
Summers WC. Bacteriophage therapy. Annu Rev Microbiol. 2001;55:437–451. doi: 10.1146/annurev.micro.55.1.437. PubMed DOI
Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib N-A, Jambari NN, Hara H, Thung TY, Lee E, Radu S (2021) Isolation and characterization of six Vibrio parahaemolyticus lytic bacteriophages from seafood samples. Front Microbiol 12:616548. 10.3389/fmicb.2021.616548. PubMed PMC
Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses. 2021;13:506. doi: 10.3390/v13030506. PubMed DOI PMC
Vikram A, Woolston J, Sulakvelidze A (2021) Phage biocontrol applications in food production and processing. Curr Issues Mol Biol 40:267–302. 10.21775/cimb.040.267 PubMed
Wang K, Tamayo MG, Penner TV, Cook BWM, Court DA, Theriault SS. Characterization of the Enterobacter phage vB_EclM_CIP9. Microbiol Resour Announc. 2020;9:e01600–e1619. doi: 10.1128/MRA.01600-19. PubMed DOI PMC
Wang Z, Zhao X. The application and research progress of bacteriophages in food safety. J App Microbiol. 2022;133:2137–2147. doi: 10.1111/jam.15555. PubMed DOI
Wang Z, Zheng P, Ji W, Fu Q, Wang H, Yan Y, Sun J. SLPW: a virulent bacteriophage targeting methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol. 2016;7:934. doi: 10.3389/fmicb.2016.00934. PubMed DOI PMC
Wójcicki M, Błazejak S, Gientka I, Brzezicka K (2019) The concept of using bacteriophages to improve the microbiological quality of ˙minimally processed foods. Acta Sci Pol Technol Aliment 18:373–383. 10.17306/J.AFS.0695 PubMed
Yang H, Liang L, Lin S, Jia S. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol. 2010;10:1–10. doi: 10.1186/1471-2180-10-131. PubMed DOI PMC