• This record comes from PubMed

Impact of herbivory and competition on lake ecosystem structure: underwater experimental manipulation

. 2018 Aug 14 ; 8 (1) : 12130. [epub] 20180814

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30108255
PubMed Central PMC6092342
DOI 10.1038/s41598-018-30598-0
PII: 10.1038/s41598-018-30598-0
Knihovny.cz E-resources

Two basic ecological relationships, herbivory and competition, distinctively influence terrestrial ecosystem characteristics, such as plant cover, species richness and species composition. We conducted a cage experiment under natural conditions in an aquatic ecosystem to test the impacts of two treatments combined in a factorial manner: (i) a pulse treatment - removal of dominant competitors among primary producers (macroalgae Chara sp. and Vaucheria sp.), and (ii) a press treatment - preventing herbivore (fish, crayfish) access to caged plots. The plots were sampled once before the treatments were established and four more times within two years. Both treatments had a significantly positive impact on macrophyte cover and species richness and changed the macrophyte species composition. The effect of the macroalgae removal was immediate with the highest species richness occurrence during the first post-treatment monitoring, but the positive effect vanished with time. In contrast, preventing herbivore access had a gradual but long-lasting effect and reached a more steady-state over time. Two of the most common species showed contrasting responses, the palatable Potamogeton pectinatus was most supported by caging, while the distasteful Myriophyllum spicatum preferred open plots. Our findings may be applicable during the revitalisation of aquatic ecosystems that aims to increase macrophyte biodiversity.

See more in PubMed

Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q. Rev. Biol. 1992;67:283–335. doi: 10.1086/417659. DOI

Rooney TP. Deer impacts on forest ecosystems: a North American perspective. Forestry. 2001;7:201–208. doi: 10.1093/forestry/74.3.201. DOI

Bond WJ. What Limits Trees in C-4 Grasslands and Savannas? Annu. Rev. Ecol. Evol. Syst. 2008;39:641–659. doi: 10.1146/annurev.ecolsys.39.110707.173411. DOI

Berenbaum, M. R. Herbivores: their interactions with secondary plant metabolites, the chemical participants. Physiol. Entomol. 17, 308 pp (1992).

Adler PB, Raff DA, Lauenroth WK. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia. 2001;128:465–479. doi: 10.1007/s004420100737. PubMed DOI

Barko JW, Smart RM. Sediment-related mechanisms of growth limitation in submerged macrophytes. Ecology. 1986;67:1328–1340. doi: 10.2307/1938689. DOI

Duarte CM, Kalff J. Littoral slope as a predictor of the maximum biomass soft submerged macrophyte communities. Limnol. Oceanogr. 1986;31:1072–1080. doi: 10.4319/lo.1986.31.5.1072. DOI

Squires MM, Lesack LFW, Huebert D. The influence of water transparency on the distribution and abundance of macrophytes among lakes of the Mackenzie Delta, Western CanadianArctic. Freshw. Biol. 2002;47:2123–2135. doi: 10.1046/j.1365-2427.2002.00959.x. DOI

Szoszkiewicz K, et al. Parameters structuring macrophyte communities in rivers and lakes – results from a case study in North-Central Poland. Knowl. Manag. Aquat. Ec. 2014;415:08. doi: 10.1051/kmae/2014034. DOI

Jeppesen, E., Søndergaard, M., Søndergaard, M. & Christoffersen, K. The structuring role of submerged macrophytes in lakes. 423pp (Springer, 1992).

Vergés A, Becerro MA, Alcoverro T, Romero J. Experimental evidence of chemical detergence against multiple herbivores in the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 2007;343:107–114. doi: 10.3354/meps06885. DOI

Vergés A, Alcoverro T, Ballesteros E. Role of fish herbivory in structuring the vertical distribution of canopy algae Cystoseira spp. in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 2009;375:1–11. doi: 10.3354/meps07778. DOI

Taylor DI, Schiel DR. Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores. Ecology. 2010;91:201–211. doi: 10.1890/08-1512.1. PubMed DOI

Vergés A, et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 2014;102:1518–1527. doi: 10.1111/1365-2745.12324. DOI

Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 2015;18:714–723. doi: 10.1111/ele.12450. PubMed DOI

Vergés A, et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. USA. 2016;113:13791–13796. doi: 10.1073/pnas.1610725113. PubMed DOI PMC

Vejříková I, et al. Distribution of herbivorous fish is frozen by low temperature. Sci. Rep. 2016;6:39600. doi: 10.1038/srep39600. PubMed DOI PMC

Lake MD, Hicks BJ, Wells R, Dugdale TM. Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiologia. 2002;470:13–22. doi: 10.1023/A:1015689432289. DOI

Miller SA, Crowl TA. Effects of Common Carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshw. Biol. 2006;51:85–94. doi: 10.1111/j.1365-2427.2005.01477.x. DOI

Kapuscinski KL, et al. Selective herbivory by an invasive cyprinid, the rudd Scardinius erythrophthalmus. Freshw. Biol. 2014;59:2315–2327. doi: 10.1111/fwb.12433. DOI

Guinan ME, Jr., Kapuscinski KL, Teece MA. Seasonal diet shifts and trophic position of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Linnaeus, 1758), in the upper Niagara River. Aquat. Invasions. 2015;10:217–225. doi: 10.3391/ai.2015.10.2.10. DOI

Matsuzaki SS, Usio N, Takamura N, Washitani I. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia. 2009;158:673–686. doi: 10.1007/s00442-008-1180-1. PubMed DOI

Dorenbosch M, Bakker ES. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshw. Biol. 2011;56:1783–1797. doi: 10.1111/j.1365-2427.2011.02618.x. DOI

Gross EM, Meyer H, Schilling G. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry. 1996;41:133–138. doi: 10.1016/0031-9422(95)00598-6. DOI

Choi C, Bareiss C, Walenciak O, Gross EM. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. J. Chem. Ecol. 2002;28:2245–2256. doi: 10.1023/A:1021049332410. PubMed DOI

Marko PD, Gross EM, Newman RM, Gleason FK. Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum. Aquat. Bot. 2008;88:57–65. doi: 10.1016/j.aquabot.2007.08.007. DOI

Sotka EE, et al. The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr. Comp. Biol. 2009;49:291–313. doi: 10.1093/icb/icp049. PubMed DOI

Fink P. Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshw. Behav. Phy. 2007;40:155–168. doi: 10.1080/10236240701602218. DOI

Novotny V, et al. Insects on Plants: Explaining the Paradox of Low Diversity within Specialist Herbivore Guilds. Am. Nat. 2012;179:351–362. doi: 10.1086/664082. PubMed DOI

Parkyn SM, Collier KJ, Hicks BJ. New Zealand stream crayfish: functional omnivores but trophic predators? Freshw. Biol. 2001;46:641–652. doi: 10.1046/j.1365-2427.2001.00702.x. DOI

González-Bergonzoni I, et al. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems. 2012;15:492–503. doi: 10.1007/s10021-012-9524-4. DOI

Nurminen L, Horppila J, Lappalainen J, Malinen T. Implications of rudd (Scardinius erythrophthalmus) herbivory on submerged macrophytes in a shallow eutrophic lake. Hydrobiologia. 2003;506–509:511–518. doi: 10.1023/B:HYDR.0000008577.16934.a9. DOI

Dorenbosch M, Bakker ES. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment. Freshw. Biol. 2012;57:1360–1372. doi: 10.1111/j.1365-2427.2012.02790.x. DOI

Glenn-Lewin, D. C. & van der Maarel, E. Pattern and process of vegetation dynamics. In: Plant succession, theory and prediction. (eds Glenn-Lewin, D. C., Peet, R. K., Veblen, T. T.) 11–59 (Chapman & Hall, 1992).

Johnson, E. & Miyanishi, K. Plant disturbance ecology. The process and the response. 673pp (Elsevier, 2007).

Wilson JB. The twelve theories of co-existence in plant communities: the doubtful, the important and the unexplored. J. Veg. Sci. 2011;22:184–195. doi: 10.1111/j.1654-1103.2010.01226.x. DOI

Connell JH, Slatyer RO. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1977;111:1119–1144. doi: 10.1086/283241. DOI

Tilman D. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos. 1990;58:3–15. doi: 10.2307/3565355. DOI

Levins R, Culver D. Regional co-existence of species and competition between rare species. Proc. Natl. Acad. Sci. USA. 1971;68:1246–1248. doi: 10.1073/pnas.68.6.1246. PubMed DOI PMC

Roxburgh SH, Shea K, Wilson JB. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology. 2004;85:359–371. doi: 10.1890/03-0266. DOI

Cadotte MW. Competition–colonization trade offs and disturbance effects at multiple scales. Ecology. 2007;88:823–829. doi: 10.1890/06-1117. PubMed DOI

Arthaud F, Vallod D, Robin J, Wezel A, Bornette G. Short-term succession of aquatic plant species richness along ecosystem productivity and dispersal gradients in shallow lakes. J. Veg. Sci. 2013;24:148–156. doi: 10.1111/j.1654-1103.2012.01436.x. DOI

Bornette G, Amoros C, Lamouroux N. Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshw. Biol. 1998;39:267–283. doi: 10.1046/j.1365-2427.1998.00273.x. DOI

Chambers PA, Prepas EE. Competition and coexistence in submerged aquatic plant communities: the effect of species interactions versus abiotic factors. Freshw. Biol. 1990;23:541–550. doi: 10.1111/j.1365-2427.1990.tb00293.x. DOI

van Donk E, Otte A. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia. 1996;340:285–290. doi: 10.1007/BF00012769. DOI

Kapuscinski KL, Farrell JM, Wilkinson MA. Feeding patterns and population structure of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Cypriniformes, Cyprinidae), in Buffalo Harbor (Lake Erie) and the upper Niagara River. Hydrobiologia. 2012;693:169–181. doi: 10.1007/s10750-012-1106-0. DOI

Bender EA, Case TJ, Gilpin ME. Perturbation experiments in community ecology: theory and practice. Ecology. 1984;65:1–13. doi: 10.2307/1939452. DOI

Schmitz OJ. Press perturbations and the predictability of Ecological interactions in a food web. Ecology. 1997;78:55–69.

Cottenie K, Michels E, Nuytten N, DeMeester L. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology. 2003;84:991–1000. doi: 10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2. DOI

Cook WM, Yao J, Foster BL, Holt RD, Patrick B. Secondary succession in an experimentally fragmented landscape: community patterns across space and time. Ecology. 2005;86:1267–1279. doi: 10.1890/04-0320. DOI

Josefsson, M. Invasive Species Fact Sheet – Elodea canadensis, Elodea nuttallii and Elodea callitrichoides– From: Online Database of the European Network on Invasive Alien Species. Preprint at www.nobanis.org (2011).

Krahulec F, Lepš J, Rauch O. Vegetation succession on new lowland reservoir. Arch. Hydrobiol.–Beih. Ergebn. Limnol. 1987;27:83–93.

Figuerola J, Green AJ. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw. Biol. 2002;47:483–494. doi: 10.1046/j.1365-2427.2002.00829.x. DOI

Soons MB, Van Der Vlugt C, Van Lith B, Heil GW, Klaassen M. Small seed size increases the potential for dispersal of wetland plants by ducks. J. Ecol. 2008;96:619–627. doi: 10.1111/j.1365-2745.2008.01372.x. DOI

Brochet AL, Guillemain M, Fritz H, Gauthier-Clerc M, Green AJ. Plant dispersal by teal (Anas crecca) in the Camargue: duck guts are more important than their feet. Freshw. Biol. 2010;55:1262–1273. doi: 10.1111/j.1365-2427.2009.02350.x. DOI

Bakker ES, et al. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat. Bot. 2016;135:18–36. doi: 10.1016/j.aquabot.2016.04.008. DOI

Wood KA, et al. Herbivore regulation of plant abundance in aquatic ecosystems. Biol. Rev. 2016;92:1128–1141. doi: 10.1111/brv.12272. PubMed DOI

Vejříková I, et al. Macrophytes shape trophic niche variation among generalist fishes. Plos One. 2017;12:e0177114. doi: 10.1371/journal.pone.0177114. PubMed DOI PMC

Holm TE, Laursen K, Clausen P. The feeding ecology and distribution of common coots Fulica atra are affected by hunting taking place in adjacent areas. Bird Study. 2011;58:321–329. doi: 10.1080/00063657.2011.575927. DOI

Bakker ES, Pagès JF, Arthur R, Alcoverro T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography. 2016;39:162–179. doi: 10.1111/ecog.01651. DOI

Kouba A, et al. The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish. Sci. Rep. 2016;6:26569. doi: 10.1038/srep26569. PubMed DOI PMC

Collins B, Wein G, Philippi T. Effects of disturbance intensity and frequency on early old-field succession. J. Veg. Sci. 2001;12:721–728. doi: 10.2307/3236913. DOI

Lepš J. Nutrient status, disturbance and competition: an experimental test of relationships in a wet meadow. J. Veg. Sci. 1999;10:219–230. doi: 10.2307/3237143. DOI

Short FT, Wyllie-Echeverria S. Natural and human-induced disturbance of seagrasses. Environ. Conserv. 1996;23:17–27. doi: 10.1017/S0376892900038212. DOI

Brooks JL, Dodson SI. Predation, body size, and composition of plankton. Science. 1965;150:28–35. doi: 10.1126/science.150.3692.28. PubMed DOI

Hillebrand H. Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. J. Phycol. 2009;45:798–806. doi: 10.1111/j.1529-8817.2009.00702.x. PubMed DOI

Van den Brink PJ, Ter Braak CJF. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 1999;18:138–148. doi: 10.1002/etc.5620180207. DOI

Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5. (Cambridge University Press, 2014).

Esri, Working with ArcMap. ArcGIS Help 10.2.2. (2016). Available at: http://resources.arcgis.com/en/help/main/10.2/#/Mapping_and_visualization_in_ArcGIS_for_Desktop/018q00000004000000/ (accessed 16th April 2018).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...