Magnetization of active inclusion bodies: comparison with centrifugation in repetitive biotransformations
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 2/0058/17
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 2/0090/16
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-15-0227
Agentúra na Podporu Výskumu a Vývoja
LO1305
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30176877
PubMed Central
PMC6122667
DOI
10.1186/s12934-018-0987-7
PII: 10.1186/s12934-018-0987-7
Knihovny.cz E-zdroje
- Klíčová slova
- Active inclusion bodies, Magnetic modification, Recycling in biotransformations, Sialic acid aldolase, UDP–glucose pyrophosphorylase,
- MeSH
- biotransformace fyziologie MeSH
- buněčná inkluze metabolismus MeSH
- centrifugace metody MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Physiological aggregation of a recombinant enzyme into enzymatically active inclusion bodies could be an excellent strategy to obtain immobilized enzymes for industrial biotransformation processes. However, it is not convenient to recycle "gelatinous masses" of protein inclusion bodies from one reaction cycle to another, as high centrifugation forces are needed in large volumes. The magnetization of inclusion bodies is a smart solution for large-scale applications, enabling an easier separation process using a magnetic field. RESULTS: Magnetically modified inclusion bodies of UDP-glucose pyrophosphorylase were recycled 50 times, in comparison, inclusion bodies of the same enzyme were inactivated during ten reaction cycles if they were recycled by centrifugation. Inclusion bodies of sialic acid aldolase also showed good performance and operational stability after the magnetization procedure. CONCLUSIONS: It is demonstrated here that inclusion bodies can be easily magnetically modified by magnetic iron oxide particles prepared by microwave-assisted synthesis from ferrous sulphate. The magnetic particles stabilize the repetitive use of the inclusion bodies .
Zobrazit více v PubMed
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014;4:117–139. doi: 10.3390/biom4010117. PubMed DOI PMC
Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 2007;40:1451–1463. doi: 10.1016/j.enzmictec.2007.01.018. DOI
Brady D, Jordaan J. Advances in enzyme immobilisation. Biotech Lett. 2009;31:1639–1650. doi: 10.1007/s10529-009-0076-4. PubMed DOI
Bučko M, Mislovičová D, Nahálka J, Vikartovská A, Šefčovičová J, Katrlík J, Švitel J. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem Pap. 2012;66:983–998.
Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 1999;8:1668–1674. doi: 10.1110/ps.8.8.1668. PubMed DOI PMC
García-Fruitós E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Villaverde A. Bacterial inclusion bodies: making gold from waste. Trends Biotechnol. 2012;30:65–70. doi: 10.1016/j.tibtech.2011.09.003. PubMed DOI
Hrabárová E, Achbergerová L, Nahálka J. Insoluble protein applications: the use of bacterial inclusion bodies as biocatalysts. In: Garcia-Fruitos E, editor. Insoluble proteins: Methods and protocols. Methods in molecular biology. 2014; 1258:411-422. PubMed
Nahalka J, Nidetzky B. Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilisd-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng. 2007;97:454–461. doi: 10.1002/bit.21244. PubMed DOI
Nahálka J. Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-d-glucose-1-phosphate. J Ind Microbiol Biotechnol. 2008;35:219–223. doi: 10.1007/s10295-007-0287-4. PubMed DOI
Nahálka J, Vikartovská A, Hrabárová E. A crosslinked inclusion body process for sialic acid synthesis. J Biotechnol. 2008;134:146–153. doi: 10.1016/j.jbiotec.2008.01.014. PubMed DOI
Ventura S, Villaverde A. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 2006;24:179–185. doi: 10.1016/j.tibtech.2006.02.007. PubMed DOI
García-Fruitós E, González-Montalbán N, Morell M, Vera A, Ferraz RM, Arís A, Villaverde A. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact. 2005;4:27. doi: 10.1186/1475-2859-4-27. PubMed DOI PMC
Huang Z, Zhang C, Chen S, Ye F, Xing X. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Fact. 2013;12:25. doi: 10.1186/1475-2859-12-25. PubMed DOI PMC
Wu W, Xing L, Zhou B, Lin Z. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact. 2011;10:9. doi: 10.1186/1475-2859-10-9. PubMed DOI PMC
Zhou B, Xing L, Wu W, Zhang X, Lin Z. Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Fact. 2012;11:10. doi: 10.1186/1475-2859-11-10. PubMed DOI PMC
Wang X, Zhou B, Hu W, Zhao Q, Lin Z. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb Cell Fact. 2015;14:88. doi: 10.1186/s12934-015-0270-0. PubMed DOI PMC
Roessl U, Nahálka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotech Lett. 2010;32:341–350. doi: 10.1007/s10529-009-0173-4. PubMed DOI
Pospiskova K, Safarik I. Low-temperature magnetic modification of sensitive biological materials. Mater Lett. 2015;142:184–188. doi: 10.1016/j.matlet.2014.11.163. DOI
Safarik I, Pospiskova K, Baldikova E, Safarikova M. Magnetically responsive biological materials and their applications. Adv Mater Lett. 2016;7:254–261. doi: 10.5185/amlett.2016.6176. DOI
Sivashankar R, Sathya AB, Vasantharaj K, Sivasubramanian V. Magnetic composite an environmental super adsorbent for dye sequestration—a review. Environ Nanotechnol Monit Manage. 2014;1–2:36–49. doi: 10.1016/j.enmm.2014.06.001. DOI
Zhang T, Cao C, Tang X, Cai Y, Yang C, Pan Y. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles. Nanotechnology. 2017;28:4. PubMed
Corchero JL, Villaverde A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 2009;27:468–476. doi: 10.1016/j.tibtech.2009.04.003. PubMed DOI
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
Safarik I, Pospiskova K, Baldikova E, Safarikova M. Development of advanced biorefinery concepts using magnetically responsive materials. Biochem Eng J. 2016;116:17–26. doi: 10.1016/j.bej.2016.04.027. DOI
Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn Res Technol. 2004;2:7. doi: 10.1186/1477-044X-2-7. PubMed DOI PMC
Long J, Jiao A, Wei B, Wu Z, Zhang Y, Xu X, Jin Z. A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J Mol Catal B Enzyme. 2014;109:53–61. doi: 10.1016/j.molcatb.2014.08.007. DOI
Cesano F, Fenoglio G, Carlos L, Nisticò R. One-step synthesis of magnetic chitosan polymer composite films. Appl Surf Sci. 2015;345:175–181. doi: 10.1016/j.apsusc.2015.03.154. DOI
Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res. 2014;53:3448–3454. doi: 10.1021/ie404072s. DOI
Zhang W, Qiu J, Feng H, Zang L, Sakai E. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater. 2015;375:117–123. doi: 10.1016/j.jmmm.2014.09.067. DOI
Pospiskova K, Safarik I. Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization. Carbohyd Polym. 2013;96:545–548. doi: 10.1016/j.carbpol.2013.04.014. PubMed DOI
Zheng B, Zhang M, Xiao D, Jin Y, Choi MMF. Fast microwave synthesis of Fe3O4 and Fe3O4/Ag magnetic nanoparticles using Fe2+ as precursor. Inorg Mater. 2010;46:1106–1111. doi: 10.1134/S0020168510100146. DOI
Safarik I, Pospiskova K, Maderova Z, Baldikova E, Horska K, Safarikova M. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells. Yeast. 2015;32:239–243. PubMed
Prochazkova G, Safarik I, Branyik T. Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol. 2013;130:472–477. doi: 10.1016/j.biortech.2012.12.060. PubMed DOI
Baldikova E, Safarikova M, Safarik I. Organic dyes removal using magnetically modified rye straw. J Magn Magn Mater. 2015;380:181–185. doi: 10.1016/j.jmmm.2014.09.003. DOI
Safarik I, Safarikova M. One-step magnetic modification of non-magnetic solid materials. Int J Mater Res. 2014;105:104–107. doi: 10.3139/146.111009. DOI
Talafová K, Nahálka J. “Lost sugars”—reality of their biological and medical applications. Cent Eur J Biol. 2012;7:777–793.
Talafová K, Hrabárová E, Nahálka J. A semi-multifunctional sialyltransferase from bibersteinia trehalosi and its comparison to the pasteurella multocida ST1 mutants. J Biotechnol. 2015;216:116–124. doi: 10.1016/j.jbiotec.2015.09.031. PubMed DOI
Wang L. Towards revealing the structure of bacterial inclusion bodies. Prion. 2009;3:139–145. doi: 10.4161/pri.3.3.9922. PubMed DOI PMC
Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol. 1994;28:38–46. doi: 10.1021/es00050a007. PubMed DOI
Saito T, Koopal LK, Nagasaki S, Tanaka S. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation. J Phys Chem B. 2008;112:1339–1349. doi: 10.1021/jp076621x. PubMed DOI
Mahdizadeh F, Karimi A, Ranjbarian L. Immobilization of glucose oxidase on synthesized superparamagnetic Fe3O4 nanoparticles; application for water deoxygenation. Int J Sci Eng Res. 2012;3:516–520.