IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
U54 HD086984
NICHD NIH HHS - United States
WT200990/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
30206421
PubMed Central
PMC6752297
DOI
10.1038/s41436-018-0268-1
PII: S1098-3600(21)00965-5
Knihovny.cz E-zdroje
- Klíčová slova
- IQSEC2, X-linked inheritance, epilepsy, intellectual disability, isoforms,
- MeSH
- fenotyp MeSH
- kojenec MeSH
- lidé MeSH
- mentální retardace epidemiologie genetika patofyziologie MeSH
- mozek růst a vývoj metabolismus MeSH
- mutace MeSH
- nemoci mozku epidemiologie genetika patofyziologie MeSH
- novorozenec MeSH
- pohlavní dimorfismus MeSH
- protein - isoformy genetika MeSH
- rodokmen MeSH
- výměnné faktory guaninnukleotidů genetika MeSH
- záchvaty epidemiologie genetika patofyziologie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IQSEC2 protein, human MeSH Prohlížeč
- protein - isoformy MeSH
- výměnné faktory guaninnukleotidů MeSH
PURPOSE: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. METHODS: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. RESULTS: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. CONCLUSION: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
Aix Marseille University INSERM MMG UMR S 1251 Faculte de medecine Marseille France
APHP Department of Clinical Neurophysiology Necker Enfants Malades Hospital Paris France
APHP Hôpital Trousseau service de neuropediatrie Paris France
APHP Laboratoire de Genetique et Biologie Moleculaires Hôpital Cochin HUPC Paris France
APHP Service de neurologie pediatrique Hôpital Universitaire Bicetre Le Kremlin Bicetre France
APHP University Hospital of Paris ïle de France ouest Raymond Poincare Hospital Garches France
Centre de Genetique Chromosomique Hôpital St Vincent de Paul GHICL Lille France
Centre de Genetique Humaine Institut de Pathologie et de Genetique Gosselies Belgium
Centre for Medical Genetics Ghent Ghent University Hospital C Heymanslaan 10 Ghent Belgium
CHU La Reunion Groupe Hospitalier Sud Reunion La Reunion France
CHU Rennes Service de Genetique Moleculaire et Genomique Rennes France
Claude Bernard Lyon 1 University Lyon France
Clinical Genomics and Predictive Medicine Providence Medical Group Dayton WA USA
Danish Epilepsy Centre Filadelfia Dianalund Denmark
Departement de Genetique Medicale APHM Hopital d'Enfants de La Timone Marseille France
Department of Clinical Diagnostics Ambry Genetics Aliso Viejo CA USA
Department of Genetics University Medical Center Utrecht Utrecht The Netherlands
Department of Pediatric Neurology University Hospital and University of Antwerp Antwerp Belgium
Department of Pediatrics Albany Medical Center Albany NY USA
Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
Division of Neuropediatrics CHU Raymond Poincare Garches France
FHU TRANSLAD Universite de Bourgogne CHU Dijon Dijon France
IGBMC CNRS UMR 7104 INSERM U964 Universite de Strasbourg Illkirch France
INSERM U1163 Imagine Institute Paris France
INSERM U1183 Montpellier France
Institut de Genetique Medicale CHRU Lille Universite de Lille Lille France
Institute for Regional Health Services University of Southern Denmark Odense Denmark
Institute of Human Genetics University Hospital Essen University of Duisburg Essen Essen Germany
Neurogenetics Group Center of Molecular Neurology VIB Antwerp Belgium
Neurology Department University Hospital Antwerp Antwerp Belgium
Paris Descartes University Paris France
Service de Genetique Medicale CLAD Ouest CHU Hôpital Sud Rennes France
Service de Genetique Medicale Hôpital Chubert Vannes France
Stichting Epilepsie Instellingen Nederland SEIN Zwolle The Netherlands
Unite fonctionnelle de genetique clinique Centre Hospitalier Intercommunal de Creteil Creteil France
Zobrazit více v PubMed
Alexander-Bloch AF, McDougle CJ, Ullman Z, Sweetser DA. IQSEC2 and X-linked syndromal intellectual disability. Psychiatr Genet. 2016;26:101–108. doi: 10.1097/YPG.0000000000000128. PubMed DOI PMC
Lyon MF. X-chromosome inactivation and human genetic disease. Acta Paediatr Suppl. 2002;91:107–112. doi: 10.1111/j.1651-2227.2002.tb03120.x. PubMed DOI
Wieacker P, Wieland I. Clinical and genetic aspects of craniofrontonasal syndrome: towards resolving a genetic paradox. Mol Genet Metab. 2005;86:110–116. doi: 10.1016/j.ymgme.2005.07.017. PubMed DOI
Depienne C, LeGuern E. PCDH19-related infantile epileptic encephalopathy: an unusual X-linked inheritance disorder. Hum Mutat. 2012;33:627–634. doi: 10.1002/humu.22029. PubMed DOI
Galupa R, Heard E. X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev. 2015;31:57–66. doi: 10.1016/j.gde.2015.04.002. PubMed DOI
Plenge RM, Stevenson RA, Lubs HA, Schwartz CE, Willard HF. Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet. 2002;71:168–173. doi: 10.1086/341123. PubMed DOI PMC
Tukiainen T, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244–248. doi: 10.1038/nature24265. PubMed DOI PMC
Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–404. doi: 10.1038/nature03479. PubMed DOI
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays. 2014;36:746–756. doi: 10.1002/bies.201400032. PubMed DOI PMC
Al Nadaf S, et al. A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma. 2012;121:71–78. doi: 10.1007/s00412-011-0343-8. PubMed DOI PMC
Shoubridge C, et al. Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat Genet. 2010;42:486–488. doi: 10.1038/ng.588. PubMed DOI PMC
Sakagami H, et al. IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for Arf6 that interacts with PSD-95 at postsynaptic density of excitatory synapses. Neurosci Res. 2008;60:199–212. doi: 10.1016/j.neures.2007.10.013. PubMed DOI
Sanda M, et al. The postsynaptic density protein, IQ-ArfGEF/BRAG1, can interact with IRSp53 through its proline-rich sequence. Brain Res. 2009;1251:7–15. doi: 10.1016/j.brainres.2008.11.061. PubMed DOI
Murphy JA, Jensen ON, Walikonis RS. BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res. 2006;1120:35–45. doi: 10.1016/j.brainres.2006.08.096. PubMed DOI
Dosemeci A, et al. Composition of the synaptic PSD-95 complex. Mol Cell Proteomics. 2007;6:1749–1760. doi: 10.1074/mcp.M700040-MCP200. PubMed DOI PMC
Hinze SJ, et al. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Transl Psychiatry. 2017;7:e1110. doi: 10.1038/tp.2017.81. PubMed DOI PMC
Elagabani MN, et al. Subunit-selective N-Methyl-d-aspartate (NMDA) receptor signaling through brefeldin A-resistant Arf guanine nucleotide exchange factors BRAG1 and BRAG2 during synapse maturation. J Biol Chem. 2016;291:9105–9118. doi: 10.1074/jbc.M115.691717. PubMed DOI PMC
Kalscheuer VM, et al. Novel missense mutation A789V in IQSEC2 underlies X-linked intellectual disability in the MRX78 family. Front Mol Neurosci. 2015;8:85. PubMed PMC
Brown JC, et al. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat Commun. 2016;7:11080. doi: 10.1038/ncomms11080. PubMed DOI PMC
Morleo M, et al. Disruption of the IQSEC2 transcript in a female with X;autosome translocation t(X;20)(p11.2;q11.2) and a phenotype resembling X-linked infantile spasms (ISSX) syndrome. Mol Med Rep. 2008;1:33–39. PubMed
Allou L, et al. Rett-like phenotypes: expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5-related disease. Clin Genet. 2017;91:431–440. doi: 10.1111/cge.12784. PubMed DOI
Berger SI, et al. Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants. Hum Genet. 2017;136:409–420. doi: 10.1007/s00439-017-1767-x. PubMed DOI PMC
Epi KC. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet. 2016;99:287–298. doi: 10.1016/j.ajhg.2016.06.003. PubMed DOI PMC
Epi KC, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–221. doi: 10.1038/nature12439. PubMed DOI PMC
Zerem A, et al. The molecular and phenotypic spectrum of IQSEC2-related epilepsy. Epilepsia. 2016;57:1858–1869. doi: 10.1111/epi.13560. PubMed DOI
Gilissen C, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–347. doi: 10.1038/nature13394. PubMed DOI
Tzschach A, et al. Next-generation sequencing in X-linked intellectual disability. Eur J Hum Genet. 2015;23:1513–1518. doi: 10.1038/ejhg.2015.5. PubMed DOI PMC
de Kovel CG, et al. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients. Mol Genet Genomic Med. 2016;4:568–580. doi: 10.1002/mgg3.235. PubMed DOI PMC
Olson HE, et al. Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am J Med Genet A. 2015;167A:2017–2025. doi: 10.1002/ajmg.a.37132. PubMed DOI PMC
Madrigal I, et al. A novel splicing mutation in the IQSEC2 gene that modulates the phenotype severity in a family with intellectual disability. Eur J Hum Genet. 2016;24:1117–1123. doi: 10.1038/ejhg.2015.267. PubMed DOI PMC
Ewans LJ, et al. Gonadal mosaicism of a novel IQSEC2 variant causing female limited intellectual disability and epilepsy. Eur J Hum Genet. 2017;25:763–767. doi: 10.1038/ejhg.2017.29. PubMed DOI PMC
Filippova GN, et al. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell. 2005;8:31–42. doi: 10.1016/j.devcel.2004.10.018. PubMed DOI
Hamdan FF, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101:664–685. doi: 10.1016/j.ajhg.2017.09.008. PubMed DOI PMC
Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100:267–280. doi: 10.1016/j.ajhg.2017.01.004. PubMed DOI PMC
Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Lizio M, et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 2015;16:22. doi: 10.1186/s13059-014-0560-6. PubMed DOI PMC
Shoubridge C, Walikonis RS, Gecz J, Harvey RJ. Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability. Small GTPases. 2010;1:98–103. doi: 10.4161/sgtp.1.2.13285. PubMed DOI PMC
Mignot C, et al. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J Med Genet. 2016;53:511–522. doi: 10.1136/jmedgenet-2015-103451. PubMed DOI
Aceti M, et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry. 2015;77:805–815. doi: 10.1016/j.biopsych.2014.08.001. PubMed DOI PMC
Clement JP, et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151:709–723. doi: 10.1016/j.cell.2012.08.045. PubMed DOI PMC