Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
NV16-32696A
Ministry of Health of the Czech Republic - International
PubMed
30242828
DOI
10.1111/acps.12964
Knihovny.cz E-zdroje
- Klíčová slova
- classification, first-episode psychosis, psychoradiology, schizophrenia, structural MRI,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie normy MeSH
- počítačové zpracování obrazu normy MeSH
- reprodukovatelnost výsledků MeSH
- schizofrenie diagnostické zobrazování patologie patofyziologie MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- senzitivita a specificita MeSH
- strojové učení * MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
Department of Psychiatry Dalhousie University Halifax NS Canada
Department of Psychiatry Louis Mourier Hospital AP HP Colombes France
Department of Radiation Sciences Umeå University Umeå Sweden
Energy Transition Institute VeDeCoM Versailles France
Fondation Fondamental Créteil France
INRIA CEA Parietal team University of Paris Saclay Lille France
INSERM U894 Centre for Psychiatry and Neurosciences Paris France
National Institute of Mental Health Klecany Czech Republic
Citace poskytuje Crossref.org