Ghrelin Receptor Antagonism of Methamphetamine-Induced Conditioned Place Preference and Intravenous Self-Administration in Rats

. 2018 Sep 26 ; 19 (10) : . [epub] 20180926

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30261633

Grantová podpora
GAUK 742214 Grant Agency of the Charles University
GAUK 748216 Grant Agency of the Charles University
PROGRES Q35 Project PROGRES Q35
260388/SVV/2018 Project 260388/SVV/2018

Methamphetamine abuse imposes a significant burden on individuals and society worldwide, and an effective therapy of methamphetamine addiction would provide distinguished social benefits. Ghrelin significantly participates in reinforcing neurobiological mechanisms of stimulants, including amphetamines; thus, ghrelin antagonism is proposed as a promising addiction treatment. The aim of our study was to elucidate whether the pretreatment with growth hormone secretagogue receptor (GHS-R1A) antagonist, substance JMV2959, could reduce the methamphetamine intravenous self-administration (IVSA) and the tendency to relapse, and whether JMV2959 could reduce or prevent methamphetamine-induced conditioned place preference (CPP) in rats. Following an adequate maintenance period, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 180 min sessions of methamphetamine IVSA under a fixed ratio FR1, which significantly reduced the number of active lever-pressings, the number of infusions, and the amount of the consumed methamphetamine dose. Pretreatment with JMV2959 also reduced or prevented relapse-like behavior tested in rats on the 12th day of the abstinence period. Pretreatment with JMV2959 significantly reduced the expression of methamphetamine-induced CPP. Simultaneous administration of JMV2959 with methamphetamine during the conditioning period significantly reduced the methamphetamine-CPP. Our results encourage further research of the ghrelin antagonism as a potential new pharmacological tool for methamphetamine addiction treatment.

Zobrazit více v PubMed

Feldman R.S., Meyer J.S., Quenzer L.F., Cooper J.R. Principles of Neuropsychopharmacology. Sinauer Assiciates Publishers; Sunderland, MA, USA: 1997. Stimulants: Amphetamine and cocaine.

Kirkpatrick M.G., Gunderson E.W., Johanson C.E., Levin F.R., Foltin R.W., Hart C.L. Comparison of intranasal methamphetamine and d-amphetamine self-administration by humans. Addiction. 2012;107:783–791. doi: 10.1111/j.1360-0443.2011.03706.x. PubMed DOI PMC

Darke S., Kaye S., McKetin R., Duflou J. Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev. 2008;27:253–262. doi: 10.1080/09595230801923702. PubMed DOI

National Survey of Drug Use and Health in 2016 in the USA. NIDA; Bethesda, MD, USA: 2017.

EMCDDA . European Drug Report. Publications Office of the European Union; Luxembourg: 2016.

Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: Implications for pharmacotherapy. CNS Drugs. 2014;28:875–886. doi: 10.1007/s40263-014-0178-y. PubMed DOI PMC

Panagopoulos V.N., Ralevski E. The role of ghrelin in addiction: A review. Psychopharmacology. 2014;231:2725–2740. doi: 10.1007/s00213-014-3640-0. PubMed DOI

Koopmann A., Schuster R., Kiefer F. The impact of the appetite-regulating, orexigenic peptide ghrelin on alcohol use disorders: A systematic review of preclinical and clinical data. Biol. Psychol. 2018;131:14–30. doi: 10.1016/j.biopsycho.2016.12.012. PubMed DOI

Leggio L., Zywiak W.H., Fricchione S.R., Edwards S.M., de la Monte S.M., Swift R.M., Kenna G.A. Intravenous ghrelin administration increases alcohol craving in alcohol-dependent heavy drinkers: A preliminary investigation. Biol. Psychiatry. 2014;76:734–741. doi: 10.1016/j.biopsych.2014.03.019. PubMed DOI PMC

Farokhnia M., Grodin E.N., Lee M.R., Oot E.N., Blackburn A.N., Stangl B.L., Schwandt M.L., Farinelli L.A., Momenan R., Ramchandani V.A., et al. Exogenous ghrelin administration increases alcohol self-administration and modulates brain functional activity in heavy-drinking alcohol-dependent individuals. Mol. Psychiatry. 2017 doi: 10.1038/mp.2017.226. PubMed DOI

Lee M.R., Tapocik J.D., Ghareeb M., Schwandt M.L., Dias A.A., Le A.N., Cobbina E., Farinelli L.A., Bouhlal S., Farokhnia M., et al. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: Preclinical safety experiments and a phase 1b human laboratory study. Mol. Psychiatry. 2018 doi: 10.1038/s41380-018-0064-y. PubMed DOI PMC

Wellman P.J., Davis K.W., Nation J.R. Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul. Pept. 2005;125:151–154. doi: 10.1016/j.regpep.2004.08.013. PubMed DOI

Wellman P.J., Hollas C.N., Elliott A.E. Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats. Regul. Pept. 2008;146:33–37. doi: 10.1016/j.regpep.2007.07.007. PubMed DOI PMC

Jang J.K., Kim W.Y., Cho B.R., Lee J.W., Kim J.H. Microinjection of ghrelin in the nucleus accumbens core enhances locomotor activity induced by cocaine. Behav. Brain Res. 2013;248:7–11. doi: 10.1016/j.bbr.2013.03.049. PubMed DOI

Davis K.W., Wellman P.J., Clifford P.S. Augmented cocaine conditioned place preference in rats pretreated with systemic ghrelin. Regul. Pept. 2007;140:148–152. doi: 10.1016/j.regpep.2006.12.003. PubMed DOI PMC

Schuette L.M., Gray C.C., Currie P.J. Microinjection of Ghrelin into the Ventral Tegmental Area Potentiates Cocaine-Induced Conditioned Place Preference. J. Behav. Brain Sci. 2013;3:276–580. doi: 10.4236/jbbs.2013.38060. PubMed DOI PMC

Abizaid A., Mineur Y.S., Roth R.H., Elsworth J.D., Sleeman M.W., Picciotto M.R., Horvath T.L. Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience. 2011;192:500–506. doi: 10.1016/j.neuroscience.2011.06.001. PubMed DOI

Clifford P.S., Rodriguez J., Schul D., Hughes S., Kniffin T., Hart N., Eitan S., Brunel L., Fehrentz J.A., Martinez J., et al. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict. Biol. 2012;17:956–963. doi: 10.1111/j.1369-1600.2011.00339.x. PubMed DOI PMC

Wellman P.J., Clifford P.S., Rodriguez J.A. Ghrelin and ghrelin receptor modulation of psychostimulant action. Front. Neurosci. 2013;7:171. doi: 10.3389/fnins.2013.00171. PubMed DOI PMC

Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology. 2010;211:415–422. doi: 10.1007/s00213-010-1907-7. PubMed DOI PMC

Jerlhag E., Engel J.A. Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend. 2011;117:126–131. doi: 10.1016/j.drugalcdep.2011.01.010. PubMed DOI

Wellman P.J., Clifford P.S., Rodriguez J., Hughes S., Eitan S., Brunel L., Fehrentz J.A., Martinez J. Pharmacologic antagonism of ghrelin receptors attenuates development of nicotine induced locomotor sensitization in rats. Regul. Pept. 2011;172:77–80. doi: 10.1016/j.regpep.2011.08.014. PubMed DOI PMC

Barak L.S., Bai Y., Peterson S., Evron T., Urs N.M., Peddibhotla S., Hedrick M.P., Hershberger P., Maloney P.R., Chung T.D., et al. ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse. ACS Chem. Biol. 2016;11:1880–1890. doi: 10.1021/acschembio.6b00291. PubMed DOI PMC

Suchankova P., Engel J.A., Jerlhag E. Sub-chronic Ghrelin Receptor Blockade Attenuates Alcohol- and Amphetamine-Induced Locomotor Stimulation in Mice. Alcohol Alcohol. 2016;51:121–127. doi: 10.1093/alcalc/agv100. PubMed DOI

Yokel R.A., Pickens R. Self-administration of optical isomers of amphetamine and methylamphetamine by rats. J. Pharmacol. Exp. Ther. 1973;187:27–33. PubMed

Balster R.L., Schuster C.R. A comparison of d-amphetamine, l-amphetamine, and methamphetamine self-administration in rhesus monkeys. Pharmacol. Biochem. Behav. 1973;1:67–71. doi: 10.1016/0091-3057(73)90057-9. PubMed DOI

Goodwin J.S., Larson G.A., Swant J., Sen N., Javitch J.A., Zahniser N.R., De Felice L.J., Khoshbouei H. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. J. Biol. Chem. 2009;284:2978–2989. doi: 10.1074/jbc.M805298200. PubMed DOI PMC

Hall D.A., Stanis J.J., Marquez Avila H., Gulley J.M. A comparison of amphetamine- and methamphetamine-induced locomotor activity in rats: Evidence for qualitative differences in behavior. Psychopharmacology. 2008;195:469–478. doi: 10.1007/s00213-007-0923-8. PubMed DOI PMC

Kobeissy F.H., Jeung J.A., Warren M.W., Geier J.E., Gold M.S. Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats. Addict. Biol. 2008;13:15–25. doi: 10.1111/j.1369-1600.2007.00083.x. PubMed DOI

Yoon S.J., Pae C.U., Lee H., Choi B., Kim T.S., Lyoo I.K., Kwon D.H., Kim D.J. Ghrelin precursor gene polymorphism and methamphetamine dependence in the Korean population. Neurosci. Res. 2005;53:391–395. doi: 10.1016/j.neures.2005.08.013. PubMed DOI

Bardo M.T., Bevins R.A. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology. 2000;153:31–43. doi: 10.1007/s002130000569. PubMed DOI

Brady J.V. Animal models for assessing drugs of abuse. Neurosci. Biobehav. Rev. 1991;15:35–43. doi: 10.1016/S0149-7634(05)80089-2. PubMed DOI

Bardo M.T., Valone J.M., Bevins R.A. Locomotion and conditioned place preference produced by acute intravenous amphetamine: Role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology. 1999;143:39–46. doi: 10.1007/s002130050917. PubMed DOI

Di Chiara G. Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 1999;375:13–30. doi: 10.1016/S0014-2999(99)00372-6. PubMed DOI

Abizaid A., Liu Z.W., Andrews Z.B., Shanabrough M., Borok E., Elsworth J.D., Roth R.H., Sleeman M.W., Picciotto M.R., Tschop M.H., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Investig. 2006;116:3229–3239. doi: 10.1172/JCI29867. PubMed DOI PMC

Ferrini F., Salio C., Lossi L., Merighi A. Ghrelin in central neurons. Curr. Neuropharmacol. 2009;7:37–49. doi: 10.2174/157015909787602779. PubMed DOI PMC

Landgren S., Engel J.A., Hyytia P., Zetterberg H., Blennow K., Jerlhag E. Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference. Behav. Brain Res. 2011;221:182–188. doi: 10.1016/j.bbr.2011.03.003. PubMed DOI

Naleid A.M., Grace M.K., Cummings D.E., Levine A.S. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–2279. doi: 10.1016/j.peptides.2005.04.025. PubMed DOI

Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict. Biol. 2011;16:82–91. doi: 10.1111/j.1369-1600.2010.00231.x. PubMed DOI PMC

Jerlhag E., Janson A.C., Waters S., Engel J.A. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE. 2012;7:e49557. doi: 10.1371/journal.pone.0049557. PubMed DOI PMC

Zakharova E., Leoni G., Kichko I., Izenwasser S. Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats. Behav. Brain Res. 2009;198:45–50. doi: 10.1016/j.bbr.2008.10.019. PubMed DOI PMC

Taslimi Z., Komaki A., Haghparast A., Sarihi A. Effects of Acute and Chronic Restraint Stress on Reinstatement of Extinguished Methamphetamine-induced Conditioned Place Preference in Rats. Basic Clin. Neurosci. 2018;9:157–166. doi: 10.29252/nirp.bcn.9.3.157. PubMed DOI PMC

Dela Pena I., Ahn H.S., Choi J.Y., Shin C.Y., Ryu J.H., Cheong J.H. Reinforcing effects of methamphetamine in an animal model of attention-deficit/hyperactivity disorder—The spontaneously hypertensive rat. Behav. Brain Funct. BBF. 2010;6:72. doi: 10.1186/1744-9081-6-72. PubMed DOI PMC

Jerlhag E., Egecioglu E., Landgren S., Salome N., Heilig M., Moechars D., Datta R., Perrissoud D., Dickson S.L., Engel J.A. Requirement of central ghrelin signaling for alcohol reward. Proc. Natl. Acad. Sci. USA. 2009;106:11318–11323. doi: 10.1073/pnas.0812809106. PubMed DOI PMC

Rodriguez J.A., Fehrentz J.A., Martinez J., Ben Haj Salah K., Wellman P.J. The GHR-R antagonist JMV 2959 neither induces malaise nor alters the malaise property of LiCl in the adult male rat. Physiol. Behav. 2018;183:46–48. doi: 10.1016/j.physbeh.2017.10.017. PubMed DOI

Sustkova-Fiserova M., Charalambous C., Havlickova T., Lapka M., Jerabek P., Puskina N., Syslova K. Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin. Int. J. Mol. Sci. 2017;18:2486. doi: 10.3390/ijms18112486. PubMed DOI PMC

Jerabek P., Havlickova T., Puskina N., Charalambous C., Lapka M., Kacer P., Sustkova-Fiserova M. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats. Neurochem. Int. 2017;110:101–113. doi: 10.1016/j.neuint.2017.09.013. PubMed DOI

Ruda-Kucerova J., Babinska Z., Stark T., Micale V. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia. Neurotox. Res. 2017;32:121–133. doi: 10.1007/s12640-017-9718-9. PubMed DOI

Kitamura O., Wee S., Specio S.E., Koob G.F., Pulvirenti L. Escalation of methamphetamine self-administration in rats: A dose-effect function. Psychopharmacology. 2006;186:48–53. doi: 10.1007/s00213-006-0353-z. PubMed DOI

Clemens K.J., Cornish J.L., Hunt G.E., McGregor I.S. Intravenous methamphetamine self-administration in rats: Effects of intravenous or intraperitoneal MDMA co-administration. Pharmacol. Biochem. Behav. 2006;85:454–463. doi: 10.1016/j.pbb.2006.09.015. PubMed DOI

Carroll M.E., France C.P., Meisch R.A. Food deprivation increases oral and intravenous drug intake in rats. Science. 1979;205:319–321. doi: 10.1126/science.36665. PubMed DOI

Carroll M.E., Stotz D.C. Oral d-amphetamine and ketamine self-administration by rhesus monkeys: Effects of food deprivation. J. Pharmacol. Exp. Ther. 1983;227:28–34. PubMed

Pittenger S.T., Barrett S.T., Chou S., Bevins R.A. The effects of varenicline on methamphetamine self-administration and drug-primed reinstatement in male rats. Behav. Brain Res. 2017;320:195–199. doi: 10.1016/j.bbr.2016.12.005. PubMed DOI PMC

Van der Kam E.L., De Vry J., Tzschentke T.M. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) supports intravenous self-administration and induces conditioned place preference in the rat. Eur. J. Pharmacol. 2009;607:114–120. doi: 10.1016/j.ejphar.2009.01.049. PubMed DOI

Adhikary S., Caprioli D., Venniro M., Kallenberger P., Shaham Y., Bossert J.M. Incubation of extinction responding and cue-induced reinstatement, but not context- or drug priming-induced reinstatement, after withdrawal from methamphetamine. Addict. Biol. 2017;22:977–990. doi: 10.1111/adb.12386. PubMed DOI PMC

Suchankova P., Steensland P., Fredriksson I., Engel J.A., Jerlhag E. Ghrelin receptor (GHS-R1A) antagonism suppresses both alcohol consumption and the alcohol deprivation effect in rats following long-term voluntary alcohol consumption. PLoS ONE. 2013;8:e71284. doi: 10.1371/journal.pone.0071284. PubMed DOI PMC

Gomez J.L., Cunningham C.L., Finn D.A., Young E.A., Helpenstell L.K., Schuette L.M., Fidler T.L., Kosten T.A., Ryabinin A.E. Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence. Neuropharmacology. 2015;97:182–193. doi: 10.1016/j.neuropharm.2015.05.026. PubMed DOI PMC

Landgren S., Simms J.A., Hyytia P., Engel J.A., Bartlett S.E., Jerlhag E. Ghrelin receptor (GHS-R1A) antagonism suppresses both operant alcohol self-administration and high alcohol consumption in rats. Addict. Biol. 2012;17:86–94. doi: 10.1111/j.1369-1600.2010.00280.x. PubMed DOI

Maric T., Sedki F., Ronfard B., Chafetz D., Shalev U. A limited role for ghrelin in heroin self-administration and food deprivation-induced reinstatement of heroin seeking in rats. Addict. Biol. 2012;17:613–622. doi: 10.1111/j.1369-1600.2011.00396.x. PubMed DOI

Vinklerova J., Novakova J., Sulcova A. Inhibition of methamphetamine self-administration in rats by cannabinoid receptor antagonist AM 251. J. Psychopharmacol. 2002;16:139–143. doi: 10.1177/026988110201600204. PubMed DOI

Rodriguez J.S., Boctor S.Y., Flores L.C., Phelix C.F., Martinez J.L., Jr. Local pretreatment with the cannabinoid CB1 receptor antagonist AM251 attenuates methamphetamine intra-accumbens self-administration. Neurosci. Lett. 2011;489:187–191. doi: 10.1016/j.neulet.2010.12.013. PubMed DOI PMC

Kleijn J., Wiskerke J., Cremers T.I., Schoffelmeer A.N., Westerink B.H., Pattij T. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation. Neurochem. Int. 2012;60:791–798. doi: 10.1016/j.neuint.2012.03.002. PubMed DOI

Thiemann G., van der Stelt M., Petrosino S., Molleman A., Di Marzo V., Hasenohrl R.U. The role of the CB1 cannabinoid receptor and its endogenous ligands, anandamide and 2-arachidonoylglycerol, in amphetamine-induced behavioural sensitization. Behav. Brain Res. 2008;187:289–296. doi: 10.1016/j.bbr.2007.09.022. PubMed DOI

Su H., Zhao M. Endocannabinoid mechanism in amphetamine-type stimulant use disorders: A short review. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2017;46:9–12. doi: 10.1016/j.jocn.2017.08.042. PubMed DOI

Kalafateli A.L., Vallof D., Jornulf J.W., Heilig M., Jerlhag E. A cannabinoid receptor antagonist attenuates ghrelin-induced activation of the mesolimbic dopamine system in mice. Physiol. Behav. 2018;184:211–219. doi: 10.1016/j.physbeh.2017.12.005. PubMed DOI

Jiao D., Liu Y., Li X., Liu J., Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Front. Cell. Neurosci. 2015;9:162. doi: 10.3389/fncel.2015.00162. PubMed DOI PMC

Holst B., Cygankiewicz A., Jensen T.H., Ankersen M., Schwartz T.W. High constitutive signaling of the ghrelin receptor—Identification of a potent inverse agonist. Mol. Endocrinol. 2003;17:2201–2210. doi: 10.1210/me.2003-0069. PubMed DOI

M’Kadmi C., Leyris J.P., Onfroy L., Gales C., Sauliere A., Gagne D., Damian M., Mary S., Maingot M., Denoyelle S., et al. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling. J. Biol. Chem. 2015;290:27021–27039. doi: 10.1074/jbc.M115.659250. PubMed DOI PMC

Moulin A., Ryan J., Martinez J., Fehrentz J.A. Recent developments in ghrelin receptor ligands. ChemMedChem. 2007;2:1242–1259. doi: 10.1002/cmdc.200700015. PubMed DOI

Constantino Luca B.D. Ghrelin receptor modulators: A patent review (2011–2014) Expert Opin. Ther. Patents. 2014;24:1007–1019. doi: 10.1517/13543776.2014.941531. PubMed DOI

Muller T.D., Nogueiras R., Andermann M.L., Andrews Z.B., Anker S.D., Argente J., Batterham R.L., Benoit S.C., Bowers C.Y., Broglio F., et al. Ghrelin. Mol. Metab. 2015;4:437–460. doi: 10.1016/j.molmet.2015.03.005. PubMed DOI PMC

Esler W.P., Rudolph J., Claus T.H., Tang W., Barucci N., Brown S.E., Bullock W., Daly M., Decarr L., Li Y., et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology. 2007;148:5175–5185. doi: 10.1210/en.2007-0239. PubMed DOI

Moulin A., Brunel L., Boeglin D., Demange L., Ryan J., M’Kadmi C., Denoyelle S., Martinez J., Fehrentz J.A. The 1,2,4-triazole as a scaffold for the design of ghrelin receptor ligands: Development of JMV 2959, a potent antagonist. Amino Acids. 2013;44:301–314. doi: 10.1007/s00726-012-1355-2. PubMed DOI

Moulin A., Demange L., Berge G., Gagne D., Ryan J., Mousseaux D., Heitz A., Perrissoud D., Locatelli V., Torsello A., et al. Toward potent ghrelin receptor ligands based on trisubstituted 1,2,4-triazole structure. 2. Synthesis and pharmacological in vitro and in vivo evaluations. J. Med. Chem. 2007;50:5790–5806. doi: 10.1021/jm0704550. PubMed DOI

Sustkova-Fiserova M., Jerabek P., Havlickova T., Kacer P., Krsiak M. Ghrelin receptor antagonism of morphine-induced accumbens dopamine release and behavioral stimulation in rats. Psychopharmacology. 2014;231:2899–2908. doi: 10.1007/s00213-014-3466-9. PubMed DOI

Sustkova-Fiserova M., Jerabek P., Havlickova T., Syslova K., Kacer P. Ghrelin and endocannabinoids participation in morphine-induced effects in the rat nucleus accumbens. Psychopharmacology. 2016;233:469–484. doi: 10.1007/s00213-015-4119-3. PubMed DOI

Sanchis-Segura C., Spanagel R. Behavioural assessment of drug reinforcement and addictive features in rodents: An overview. Addict. Biol. 2006;11:2–38. doi: 10.1111/j.1369-1600.2006.00012.x. PubMed DOI

Kucerova J., Pistovcakova J., Vrskova D., Dusek L., Sulcova A. The effects of methamphetamine self-administration on behavioural sensitization in the olfactory bulbectomy rat model of depression. Int. J. Neuropsychopharmacol. 2012;15:1503–1511. doi: 10.1017/S1461145711001684. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...