Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin

. 2017 Nov 22 ; 18 (11) : . [epub] 20171122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29165386

The opioid-induced rise of extracellular dopamine, endocannabinoid anandamide and γ-aminobutyric acid (GABA) concentrations triggered by opioids in the nucleus accumbens shell (NACSh) most likely participate in opioid reward. We have previously demonstrated that systemic administration of ghrelin antagonist (JMV2959) significantly decreased morphine-induced dopamine and anandamide (N-arachidonoylethanolamine, AEA) increase in the NACSh. Fentanyl is considered as a µ-receptor-selective agonist. The aim of this study was to test whether JMV2959, a growth hormone secretagogue receptor (GHS-R1A) antagonist, can influence the fentanyl-induced effects on anandamide, 2-arachidonoylglycerol (2-AG) and GABA in the NACSh and specify the involvement of GHS-R1A located in the ventral tegmental area (VTA) and nucleus accumbens (NAC). Using in vivo microdialysis in rats, we have found that pre-treatment with JMV2959 reversed dose dependently fentanyl-induced anandamide increases in the NACSh, resulting in a significant AEA decrease and intensified fentanyl-induced decreases in accumbens 2-AG levels, with both JMV2959 effects more expressed when administered into the NACSh in comparison to the VTA. JMV2959 pre-treatment significantly decreased the fentanyl-evoked accumbens GABA efflux and reduced concurrently monitored fentanyl-induced behavioural stimulation. Our current data encourage further investigation to assess if substances affecting GABA or endocannabinoid concentrations and action, such as GHS-R1A antagonists, can be used to prevent opioid-seeking behaviour.

Zobrazit více v PubMed

Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. doi: 10.1038/45230. PubMed DOI

Egecioglu E., Jerlhag E., Salome N., Skibicka K.P., Haage D., Bohlooly Y.M., Andersson D., Bjursell M., Perrissoud D., Engel J.A., et al. Ghrelin increases intake of rewarding food in rodents. Addict. Biol. 2010;15:304–311. doi: 10.1111/j.1369-1600.2010.00216.x. PubMed DOI PMC

Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: Implications for pharmacotherapy. CNS Drugs. 2014;28:875–886. doi: 10.1007/s40263-014-0178-y. PubMed DOI PMC

Panagopoulos V.N., Ralevski E. The role of ghrelin in addiction: A review. Psychopharmacology. 2014;231:2725–2740. doi: 10.1007/s00213-014-3640-0. PubMed DOI

Ferrini F., Salio C., Lossi L., Merighi A. Ghrelin in central neurons. Curr. Neuropharmacol. 2009;7:37–49. doi: 10.2174/157015909787602779. PubMed DOI PMC

Howard A.D., Feighner S.D., Cully D.F., Arena J.P., Liberator P.A., Rosenblum C.I., Hamelin M., Hreniuk D.L., Palyha O.C., Anderson J., et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–977. doi: 10.1126/science.273.5277.974. PubMed DOI

Abizaid A., Liu Z.W., Andrews Z.B., Shanabrough M., Borok E., Elsworth J.D., Roth R.H., Sleeman M.W., Picciotto M.R., Tschop M.H., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Investig. 2006;116:3229–3239. doi: 10.1172/JCI29867. PubMed DOI PMC

Landgren S., Engel J.A., Hyytia P., Zetterberg H., Blennow K., Jerlhag E. Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference. Behav. Brain Res. 2011;221:182–188. doi: 10.1016/j.bbr.2011.03.003. PubMed DOI

Zigman J.M., Jones J.E., Lee C.E., Saper C.B., Elmquist J.K. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 2006;494:528–548. doi: 10.1002/cne.20823. PubMed DOI PMC

Naleid A.M., Grace M.K., Cummings D.E., Levine A.S. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–2279. doi: 10.1016/j.peptides.2005.04.025. PubMed DOI

Quarta D., Di Francesco C., Melotto S., Mangiarini L., Heidbreder C., Hedou G. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem. Int. 2009;54:89–94. doi: 10.1016/j.neuint.2008.12.006. PubMed DOI

Skibicka K.P., Hansson C., Alvarez-Crespo M., Friberg P.A., Dickson S.L. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–137. doi: 10.1016/j.neuroscience.2011.02.016. PubMed DOI

Maric T., Sedki F., Ronfard B., Chafetz D., Shalev U. A limited role for ghrelin in heroin self-administration and food deprivation-induced reinstatement of heroin seeking in rats. Addict. Biol. 2012;17:613–622. doi: 10.1111/j.1369-1600.2011.00396.x. PubMed DOI

D’Cunha T.M., Sedki F., Macri J., Casola C., Shalev U. The effects of chronic food restriction on cue-induced heroin seeking in abstinent male rats. Psychopharmacology. 2013;225:241–250. doi: 10.1007/s00213-012-2810-1. PubMed DOI

Engel J.A., Nylander I., Jerlhag E. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice. Eur. Neuropsychopharmacol. 2015;25:2364–2371. doi: 10.1016/j.euroneuro.2015.10.004. PubMed DOI

Sustkova-Fiserova M., Jerabek P., Havlickova T., Kacer P., Krsiak M. Ghrelin receptor antagonism of morphine-induced accumbens dopamine release and behavioral stimulation in rats. Psychopharmacology. 2014;231:2899–2908. doi: 10.1007/s00213-014-3466-9. PubMed DOI

Sustkova-Fiserova M., Jerabek P., Havlickova T., Syslova K., Kacer P. Ghrelin and endocannabinoids participation in morphine-induced effects in the rat nucleus accumbens. Psychopharmacology. 2016;233:469–484. doi: 10.1007/s00213-015-4119-3. PubMed DOI

Moulin A., Demange L., Berge G., Gagne D., Ryan J., Mousseaux D., Heitz A., Perrissoud D., Locatelli V., Torsello A., et al. Toward potent ghrelin receptor ligands based on trisubstituted 1,2,4-triazole structure. 2. Synthesis and pharmacological in vitro and in vivo evaluations. J. Med. Chem. 2007;50:5790–5806. doi: 10.1021/jm0704550. PubMed DOI

Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA. 1988;85:5274–5278. doi: 10.1073/pnas.85.14.5274. PubMed DOI PMC

Di Chiara G. Nucleus accumbens shell and core dopamine: Differential role in behavior and addiction. Behav. Brain Res. 2002;137:75–114. doi: 10.1016/S0166-4328(02)00286-3. PubMed DOI

Jerabek P., Havlickova T., Puskina N., Charalambous C., Lapka M., Kacer P., Sustkova-Fiserova M. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats. Neurochem. Int. 2017;110:101–113. doi: 10.1016/j.neuint.2017.09.013. PubMed DOI

Pothos E., Rada P., Mark G.P., Hoebel B.G. Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 1991;566:348–350. doi: 10.1016/0006-8993(91)91724-F. PubMed DOI

Leone P., Pocock D., Wise R.A. Morphine-dopamine interaction: Ventral tegmental morphine increases nucleus accumbens dopamine release. Pharmacol. Biochem. Behav. 1991;39:469–472. doi: 10.1016/0091-3057(91)90210-S. PubMed DOI

De Vries T.J., Shippenberg T.S. Neural systems underlying opiate addiction. J. Neurosci. 2002;22:3321–3325. PubMed PMC

Hyman S.E., Malenka R.C., Nestler E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006;29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009. PubMed DOI

Johnson S.W., North R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 1992;12:483–488. PubMed PMC

Creed M.C., Ntamati N.R., Tan K.R. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front. Behav. Neurosci. 2014;8:8. doi: 10.3389/fnbeh.2014.00008. PubMed DOI PMC

Fields H.L., Margolis E.B. Understanding opioid reward. Trends Neurosci. 2015;38:217–225. doi: 10.1016/j.tins.2015.01.002. PubMed DOI PMC

Aono Y., Saigusa T., Mizoguchi N., Iwakami T., Takada K., Gionhaku N., Oi Y., Ueda K., Koshikawa N., Cools A.R. Role of GABA A receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur. J. Pharmacol. 2008;580:87–94. doi: 10.1016/j.ejphar.2007.10.020. PubMed DOI

Saigusa T., Aono Y., Mizoguchi N., Iwakami T., Takada K., Oi Y., Ueda K., Koshikawa N., Cools A.R. Role of GABA B receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur. J. Pharmacol. 2008;581:276–282. doi: 10.1016/j.ejphar.2007.12.008. PubMed DOI

Yoshida Y., Koide S., Hirose N., Takada K., Tomiyama K., Koshikawa N., Cools A.R. Fentanyl increases dopamine release in rat nucleus accumbens: Involvement of mesolimbic µ- and δ-2-opioid receptors. Neuroscience. 1999;92:1357–1365. doi: 10.1016/S0306-4522(99)00046-9. PubMed DOI

Chieng B., Williams J.T. Increased opioid inhibition of GABA release in nucleus accumbens during morphine withdrawal. J. Neurosci. 1998;18:7033–7039. PubMed PMC

Harvey J., Lacey M.G. Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation. Pt 1J. Physiol. 1996;492:143–154. doi: 10.1113/jphysiol.1996.sp021296. PubMed DOI PMC

Nicola S.M., Malenka R.C. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci. 1997;17:5697–5710. PubMed PMC

McBride W.J., Murphy J.M., Ikemoto S. Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behav. Brain Res. 1999;101:129–152. doi: 10.1016/S0166-4328(99)00022-4. PubMed DOI

Koob G.F., Volkow N.D. Neurocircuitry of Addiction. Neuropsychopharmacology. 2010;35:217–238. doi: 10.1038/npp.2009.110. PubMed DOI PMC

Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front. Pharmacol. 2015;6:6. PubMed PMC

Fattore L., Deiana S., Spano S.M., Cossu G., Fadda P., Scherma M., Fratta W. Endocannabinoid system and opioid addiction: Behavioural aspects. Pharmacol. Biochem. Behav. 2005;81:343–359. doi: 10.1016/j.pbb.2005.01.031. PubMed DOI

Robledo P., Berrendero F., Ozaita A., Maldonado R. Advances in the field of cannabinoid-opioid cross-talk. Addict. Biol. 2008;13:213–224. doi: 10.1111/j.1369-1600.2008.00107.x. PubMed DOI

Trigo J.M., Martin-Garcia E., Berrendero F., Robledo P., Maldonado R. The endogenous opioid system: A common substrate in drug addiction. Drug Alcohol Depend. 2010;108:183–194. doi: 10.1016/j.drugalcdep.2009.10.011. PubMed DOI

Vigano D., Rubino T., Parolaro D. Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol. Biochem. Behav. 2005;81:360–368. doi: 10.1016/j.pbb.2005.01.021. PubMed DOI

Maldonado R., Valverde O., Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29:225–232. doi: 10.1016/j.tins.2006.01.008. PubMed DOI

Chaperon F., Soubrie P., Puech A.J., Thiebot M.H. Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology. 1998;135:324–332. doi: 10.1007/s002130050518. PubMed DOI

Navarro M., Carrera M.R., Fratta W., Valverde O., Cossu G., Fattore L., Chowen J.A., Gomez R., del Arco I., Villanua M.A., et al. Functional interaction between opioid and cannabinoid receptors in drug self-administration. J. Neurosci. 2001;21:5344–5350. PubMed PMC

Singh M.E., Verty A.N., McGregor I.S., Mallet P.E. A cannabinoid receptor antagonist attenuates conditioned place preference but not behavioural sensitization to morphine. Brain Res. 2004;1026:244–253. doi: 10.1016/j.brainres.2004.08.027. PubMed DOI

Caille S., Parsons L.H. SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats. Eur. J. Neurosci. 2003;18:3145–3149. doi: 10.1111/j.1460-9568.2003.02961.x. PubMed DOI

Solinas M., Panlilio L.V., Antoniou K., Pappas L.A., Goldberg S.R. The cannabinoid CB1 antagonist N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR-141716A) differentially alters the reinforcing effects of heroin under continuous reinforcement, fixed ratio, and progressive ratio schedules of drug self-administration in rats. J. Pharmacol. Exp. Ther. 2003;306:93–102. PubMed

Solinas M., Panlilio L.V., Tanda G., Makriyannis A., Matthews S.A., Goldberg S.R. Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology. 2005;30:2046–2057. doi: 10.1038/sj.npp.1300754. PubMed DOI

Caille S., Parsons L.H. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology. 2006;31:804–813. doi: 10.1038/sj.npp.1300848. PubMed DOI

Pickel V.M., Chan J., Kash T.L., Rodriguez J.J., MacKie K. Compartment-specific localization of cannabinoid 1 (CB1) and µ-opioid receptors in rat nucleus accumbens. Neuroscience. 2004;127:101–112. doi: 10.1016/j.neuroscience.2004.05.015. PubMed DOI

Tanda G., Pontieri F.E., Di Chiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science. 1997;276:2048–2050. doi: 10.1126/science.276.5321.2048. PubMed DOI

Caille S., Alvarez-Jaimes L., Polis I., Stouffer D.G., Parsons L.H. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J. Neurosci. 2007;27:3695–3702. doi: 10.1523/JNEUROSCI.4403-06.2007. PubMed DOI PMC

Zhang H.Y., Gao M., Liu Q.R., Bi G.H., Li X., Yang H.J., Gardner E.L., Wu J., Xi Z.X. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl. Acad. Sci. USA. 2014;111:E5007–E5015. doi: 10.1073/pnas.1413210111. PubMed DOI PMC

Vigano D., Valenti M., Cascio M.G., Di Marzo V., Parolaro D., Rubino T. Changes in endocannabinoid levels in a rat model of behavioural sensitization to morphine. Eur. J. Neurosci. 2004;20:1849–1857. doi: 10.1111/j.1460-9568.2004.03645.x. PubMed DOI

Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949. doi: 10.1126/science.1470919. PubMed DOI

Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., Kaminski N.E., Schatz A.R., Gopher A., Almog S., Martin B.R., Compton D.R., et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995;50:83–90. doi: 10.1016/0006-2952(95)00109-D. PubMed DOI

Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., Waku K. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995;215:89–97. doi: 10.1006/bbrc.1995.2437. PubMed DOI

Freund T.F., Katona I., Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003;83:1017–1066. doi: 10.1152/physrev.00004.2003. PubMed DOI

Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003;4:873–884. doi: 10.1038/nrn1247. PubMed DOI

Fride E. Endocannabinoids in the central nervous system: From neuronal networks to behavior. Curr. Drug Targets CNS Neurol. Disord. 2005;4:633–642. doi: 10.2174/156800705774933069. PubMed DOI

Solinas M., Goldberg S.R., Piomelli D. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 2008;154:369–383. doi: 10.1038/bjp.2008.130. PubMed DOI PMC

Di Marzo V., Fontana A., Cadas H., Schinelli S., Cimino G., Schwartz J.C., Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372:686–691. doi: 10.1038/372686a0. PubMed DOI

Piomelli D., Tarzia G., Duranti A., Tontini A., Mor M., Compton T.R., Dasse O., Monaghan E.P., Parrott J.A., Putman D. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597) CNS Drug Rev. 2006;12:21–38. doi: 10.1111/j.1527-3458.2006.00021.x. PubMed DOI PMC

Hillard C.J., Weinlander K.M., Stuhr K.L. Contributions of endocannabinoid signaling to psychiatric disorders in humans: Genetic and biochemical evidence. Neuroscience. 2012;204:207–229. doi: 10.1016/j.neuroscience.2011.11.020. PubMed DOI PMC

Lupica C.R., Riegel A.C., Hoffman A.F. Marijuana and cannabinoid regulation of brain reward circuits. Br. J. Pharmacol. 2004;143:227–234. doi: 10.1038/sj.bjp.0705931. PubMed DOI PMC

Cani P.D., Montoya M.L., Neyrinck A.M., Delzenne N.M., Lambert D.M. Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. Br. J. Nutr. 2004;92:757–761. doi: 10.1079/BJN20041256. PubMed DOI

Kola B., Farkas I., Christ-Crain M., Wittmann G., Lolli F., Amin F., Harvey-White J., Liposits Z., Kunos G., Grossman A.B., et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE. 2008;3:e1797. doi: 10.1371/journal.pone.0001797. PubMed DOI PMC

Folgueira C., Seoane L.M., Casanueva F.F. The brain-stomach connection. Front. Horm. Res. 2014;42:83–92. PubMed

Al Massadi O., Lopez M., Tschop M., Dieguez C., Nogueiras R. Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends Neurosci. 2017;40:167–180. doi: 10.1016/j.tins.2016.12.003. PubMed DOI

Senin L.L., Al-Massadi O., Folgueira C., Castelao C., Pardo M., Barja-Fernandez S., Roca-Rivada A., Amil M., Crujeiras A.B., Garcia-Caballero T., et al. The gastric CB1 receptor modulates ghrelin production through the mTOR pathway to regulate food intake. PLoS ONE. 2013;8:e80339. doi: 10.1371/journal.pone.0080339. PubMed DOI PMC

Alen F., Crespo I., Ramirez-Lopez M.T., Jagerovic N., Goya P., de Fonseca F.R., de Heras R.G., Orio L. Ghrelin-induced orexigenic effect in rats depends on the metabolic status and is counteracted by peripheral CB1 receptor antagonism. PLoS ONE. 2013;8:e60918. doi: 10.1371/journal.pone.0060918. PubMed DOI PMC

Tucci S.A., Rogers E.K., Korbonits M., Kirkham T.C. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br. J. Pharmacol. 2004;143:520–523. doi: 10.1038/sj.bjp.0705968. PubMed DOI PMC

Janssen P.A., Jageneau A.H., Demoen P.J., van de Westeringh C., De Canniere J.H., Raeymaekers A.H., Wouters M.S., Sanczuk S., Hermans B.K. Compounds related to pethidine-II. Mannich bases derived from various esters of 4-carboxy-4-phenylpiperidine and acetophenones. J. Med. Pharm. Chem. 1959;1:309–317. doi: 10.1021/jm50005a002. PubMed DOI

Pasternak G.W., Pan Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013;65:1257–1317. doi: 10.1124/pr.112.007138. PubMed DOI PMC

Henthorn T.K., Liu Y., Mahapatro M., Ng K.Y. Active transport of fentanyl by the blood-brain barrier. J. Pharmacol. Exp. Ther. 1999;289:1084–1089. PubMed

Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx J. Am. Soc. Exp. NeuroTher. 2005;2:54–62. doi: 10.1602/neurorx.2.1.54. PubMed DOI PMC

Mounteney J., Giraudon I., Denissov G., Griffiths P. Fentanyls: Are we missing the signs? Highly potent and on the rise in Europe. Int. J. Drug Policy. 2015;26:626–631. doi: 10.1016/j.drugpo.2015.04.003. PubMed DOI

Sun J.Y., Yang J.Y., Wang F., Wang J.Y., Song W., Su G.Y., Dong Y.X., Wu C.F. Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats. Addict. Biol. 2011;16:540–550. doi: 10.1111/j.1369-1600.2010.00244.x. PubMed DOI

Basaran N.F., Buyukuysal R.L., Sertac Yilmaz M., Aydin S., Cavun S., Millington W.R. The effect of Gly-Gln [β-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats. Neuropeptides. 2016;58:23–29. doi: 10.1016/j.npep.2016.01.007. PubMed DOI

Xi Z.X., Stein E.A. Increased mesolimbic GABA concentration blocks heroin self-administration in the rat. J. Pharmacol. Exp. Ther. 2000;294:613–619. PubMed

Ting A.K.R., van der Kooy D. The neurobiology of opiate motivation. Cold Spring Harb. Perspect. Med. 2012;2:a012096. PubMed PMC

Soria-Gomez E., Matias I., Rueda-Orozco P.E., Cisneros M., Petrosino S., Navarro L., Di Marzo V., Prospero-Garcia O. Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br. J. Pharmacol. 2007;151:1109–1116. doi: 10.1038/sj.bjp.0707313. PubMed DOI PMC

Cruz M.T., Herman M.A., Cote D.M., Ryabinin A.E., Roberto M. Ghrelin increases GABAergic transmission and interacts with ethanol actions in the rat central nucleus of the amygdala. Neuropsychopharmacology. 2013;38:364–375. doi: 10.1038/npp.2012.190. PubMed DOI PMC

Lopez Soto E.J., Agosti F., Cabral A., Mustafa E.R., Damonte V.M., Gandini M.A., Rodriguez S., Castrogiovanni D., Felix R., Perello M., Raingo J. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. J. Gen. Physiol. 2015;146:205–219. doi: 10.1085/jgp.201511383. PubMed DOI PMC

Fiserova M., Consolo S., Krsiak M. Chronic morphine induces long-lasting changes in acetylcholine release in rat nucleus accumbens core and shell: An in vivo microdialysis study. Psychopharmacology. 1999;142:85–94. doi: 10.1007/s002130050866. PubMed DOI

Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict. Biol. 2011;16:82–91. doi: 10.1111/j.1369-1600.2010.00231.x. PubMed DOI PMC

Jerlhag E., Janson A.C., Waters S., Engel J.A. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE. 2012;7:e49557. doi: 10.1371/journal.pone.0049557. PubMed DOI PMC

Holst B., Cygankiewicz A., Jensen T.H., Ankersen M., Schwartz T.W. High constitutive signaling of the ghrelin receptor—Identification of a potent inverse agonist. Mol. Endocrinol. 2003;17:2201–2210. doi: 10.1210/me.2003-0069. PubMed DOI

Justinova Z., Goldberg S.R., Heishman S.J., Tanda G. Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol. Biochem. Behav. 2005;81:285–299. doi: 10.1016/j.pbb.2005.01.026. PubMed DOI PMC

Oleson E.B., Beckert M.V., Morra J.T., Lansink C.S., Cachope R., Abdullah R.A., Loriaux A.L., Schetters D., Pattij T., Roitman M.F., et al. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron. 2012;73:360–373. doi: 10.1016/j.neuron.2011.11.018. PubMed DOI PMC

Wang X.Q., Ma J., Cui W., Yuan W.X., Zhu G., Yang Q., Heng L.J., Gao G.D. The endocannabinoid system regulates synaptic transmission in nucleus accumbens by increasing DAGL-α expression following short-term morphine withdrawal. Br. J. Pharmacol. 2016;173:1143–1153. doi: 10.1111/bph.12969. PubMed DOI PMC

Gomes I., Fujita W., Chandrakala M.V., Devi L.A. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. Prog. Mol. Biol. Transl. Sci. 2013;117:207–265. PubMed PMC

Guan X.M., Yu H., Palyha O.C., McKee K.K., Feighner S.D., Sirinathsinghji D.J., Smith R.G., Van der Ploeg L.H., Howard A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 1997;48:23–29. doi: 10.1016/S0169-328X(97)00071-5. PubMed DOI

Jerlhag E., Egecioglu E., Dickson S.L., Andersson M., Svensson L., Engel J.A. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: Implications for its involvement in brain reward. Addict. Biol. 2006;11:45–54. doi: 10.1111/j.1369-1600.2006.00002.x. PubMed DOI

Lupica C.R., Riegel A.C. Endocannabinoid release from midbrain dopamine neurons: A potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005;48:1105–1116. doi: 10.1016/j.neuropharm.2005.03.016. PubMed DOI

Van Bockstaele E.J., Pickel V.M. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 1995;682:215–221. doi: 10.1016/0006-8993(95)00334-M. PubMed DOI

Svingos A.L., Moriwaki A., Wang J.B., Uhl G.R., Pickel V.M. μ-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J. Neurosci. 1997;17:2585–2594. PubMed PMC

Groenewegen H.J., Wright C.I., Beijer A.V., Voorn P. Convergence and segregation of ventral striatal inputs and outputs. Ann. N. Y. Acad. Sci. 1999;877:49–63. doi: 10.1111/j.1749-6632.1999.tb09260.x. PubMed DOI

Steffensen S.C., Svingos A.L., Pickel V.M., Henriksen S.J. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J. Neurosci. 1998;18:8003–8015. PubMed PMC

Chang H.T., Kitai S.T. Projection neurons of the nucleus accumbens: An intracellular labeling study. Brain Res. 1985;347:112–116. doi: 10.1016/0006-8993(85)90894-7. PubMed DOI

Christie M.J., James L.B., Beart P.M. An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat. J. Neurochem. 1985;45:477–482. doi: 10.1111/j.1471-4159.1985.tb04013.x. PubMed DOI

Christie M.J., Summers R.J., Stephenson J.A., Cook C.J., Beart P.M. Excitatory amino acid projections to the nucleus accumbens septi in the rat: A retrograde transport study utilizing d[3H]aspartate and [3H]GABA. Neuroscience. 1987;22:425–439. doi: 10.1016/0306-4522(87)90345-9. PubMed DOI

Pennartz C.M., Kitai S.T. Hippocampal inputs to identified neurons in an in vitro slice preparation of the rat nucleus accumbens: Evidence for feed-forward inhibition. J. Neurosci. 1991;11:2838–2847. PubMed PMC

Brown M.T., Tan K.R., O’Connor E.C., Nikonenko I., Muller D., Luscher C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492:452–456. doi: 10.1038/nature11657. PubMed DOI

Laviolette S.R., van der Kooy D. GABA(A) receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non-dopaminergic neural motivational systems. Eur. J. Neurosci. 2001;13:1009–1015. doi: 10.1046/j.1460-9568.2001.01458.x. PubMed DOI

Wise R.A., Bozarth M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987;94:469–492. doi: 10.1037/0033-295X.94.4.469. PubMed DOI

Zhang L., Walker E.A., Sutherland J., Young A.M. Discriminative stimulus effects of two doses of fentanyl in rats: Pharmacological selectivity and effect of training dose on agonist and antagonist effects of mu opioids. Psychopharmacology. 2000;148:136–145. doi: 10.1007/s002130050035. PubMed DOI

Megens A.A., Artois K., Vermeire J., Meert T., Awouters F.H. Comparison of the analgesic and intestinal effects of fentanyl and morphine in rats. J. Pain Symptom Manag. 1998;15:253–257. doi: 10.1016/S0885-3924(97)00371-0. PubMed DOI

Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology. 2010;211:415–422. doi: 10.1007/s00213-010-1907-7. PubMed DOI PMC

Clifford P.S., Rodriguez J., Schul D., Hughes S., Kniffin T., Hart N., Eitan S., Brunel L., Fehrentz J.A., Martinez J., et al. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict. Biol. 2012;17:956–963. doi: 10.1111/j.1369-1600.2011.00339.x. PubMed DOI PMC

Hansson C., Shirazi R.H., Naslund J., Vogel H., Neuber C., Holm G., Anckarsater H., Dickson S.L., Eriksson E., et al. Ghrelin influences novelty seeking behavior in rodents and men. PLoS ONE. 2012;7:e50409. doi: 10.1371/journal.pone.0050409. PubMed DOI PMC

Skibicka K.P., Hansson C., Egecioglu E., Dickson S.L. Role of ghrelin in food reward: Impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict. Biol. 2012;17:95–107. doi: 10.1111/j.1369-1600.2010.00294.x. PubMed DOI PMC

Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Academic Press/Elsevier; Amsterdam, The Netherlands: 2006.

Syslova K., Rambousek L., Kuzma M., Najmanova V., Bubenikova-Valesova V., Slamberova R., Kacer P. Monitoring of dopamine and its metabolites in brain microdialysates: Method combining freeze-drying with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2011;1218:3382–3391. doi: 10.1016/j.chroma.2011.02.006. PubMed DOI

Ruda-Kucerova J., Amchova P., Havlickova T., Jerabek P., Babinska Z., Kacer P., Syslova K., Sulcova A., Sustkova-Fiserova M. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J. Biol. Psychiatry. 2015;16:521–535. doi: 10.3109/15622975.2015.1077991. PubMed DOI

Acquas E., Di Chiara G. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J. Neurochem. 1992;58:1620–1625. doi: 10.1111/j.1471-4159.1992.tb10033.x. PubMed DOI

Rada P.V., Mark G.P., Taylor K.M., Hoebel B.G. Morphine and naloxone, i.p. or locally, affect extracellular acetylcholine in the accumbens and prefrontal cortex. Pharmacol. Biochem. Behav. 1996;53:809–816. doi: 10.1016/0091-3057(95)02078-0. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...