Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29165386
PubMed Central
PMC5713452
DOI
10.3390/ijms18112486
PII: ijms18112486
Knihovny.cz E-zdroje
- Klíčová slova
- 2-arachidonoylglycerol, GABA, anandamide, endocannabinoids, fentanyl, ghrelin, microdialysis, neural reward system, nucleus accumbens shell, ventral tegmental area,
- MeSH
- chování zvířat MeSH
- endokanabinoidy metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- fentanyl farmakologie MeSH
- GABA metabolismus MeSH
- ghrelin farmakologie MeSH
- glycin analogy a deriváty farmakologie MeSH
- krysa rodu Rattus MeSH
- nucleus accumbens účinky léků metabolismus MeSH
- receptory ghrelinu metabolismus MeSH
- tegmentum mesencephali - area ventralis účinky léků metabolismus MeSH
- triazoly farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endokanabinoidy MeSH
- fentanyl MeSH
- GABA MeSH
- ghrelin MeSH
- glycin MeSH
- N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide MeSH Prohlížeč
- receptory ghrelinu MeSH
- triazoly MeSH
The opioid-induced rise of extracellular dopamine, endocannabinoid anandamide and γ-aminobutyric acid (GABA) concentrations triggered by opioids in the nucleus accumbens shell (NACSh) most likely participate in opioid reward. We have previously demonstrated that systemic administration of ghrelin antagonist (JMV2959) significantly decreased morphine-induced dopamine and anandamide (N-arachidonoylethanolamine, AEA) increase in the NACSh. Fentanyl is considered as a µ-receptor-selective agonist. The aim of this study was to test whether JMV2959, a growth hormone secretagogue receptor (GHS-R1A) antagonist, can influence the fentanyl-induced effects on anandamide, 2-arachidonoylglycerol (2-AG) and GABA in the NACSh and specify the involvement of GHS-R1A located in the ventral tegmental area (VTA) and nucleus accumbens (NAC). Using in vivo microdialysis in rats, we have found that pre-treatment with JMV2959 reversed dose dependently fentanyl-induced anandamide increases in the NACSh, resulting in a significant AEA decrease and intensified fentanyl-induced decreases in accumbens 2-AG levels, with both JMV2959 effects more expressed when administered into the NACSh in comparison to the VTA. JMV2959 pre-treatment significantly decreased the fentanyl-evoked accumbens GABA efflux and reduced concurrently monitored fentanyl-induced behavioural stimulation. Our current data encourage further investigation to assess if substances affecting GABA or endocannabinoid concentrations and action, such as GHS-R1A antagonists, can be used to prevent opioid-seeking behaviour.
Zobrazit více v PubMed
Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. doi: 10.1038/45230. PubMed DOI
Egecioglu E., Jerlhag E., Salome N., Skibicka K.P., Haage D., Bohlooly Y.M., Andersson D., Bjursell M., Perrissoud D., Engel J.A., et al. Ghrelin increases intake of rewarding food in rodents. Addict. Biol. 2010;15:304–311. doi: 10.1111/j.1369-1600.2010.00216.x. PubMed DOI PMC
Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: Implications for pharmacotherapy. CNS Drugs. 2014;28:875–886. doi: 10.1007/s40263-014-0178-y. PubMed DOI PMC
Panagopoulos V.N., Ralevski E. The role of ghrelin in addiction: A review. Psychopharmacology. 2014;231:2725–2740. doi: 10.1007/s00213-014-3640-0. PubMed DOI
Ferrini F., Salio C., Lossi L., Merighi A. Ghrelin in central neurons. Curr. Neuropharmacol. 2009;7:37–49. doi: 10.2174/157015909787602779. PubMed DOI PMC
Howard A.D., Feighner S.D., Cully D.F., Arena J.P., Liberator P.A., Rosenblum C.I., Hamelin M., Hreniuk D.L., Palyha O.C., Anderson J., et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–977. doi: 10.1126/science.273.5277.974. PubMed DOI
Abizaid A., Liu Z.W., Andrews Z.B., Shanabrough M., Borok E., Elsworth J.D., Roth R.H., Sleeman M.W., Picciotto M.R., Tschop M.H., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Investig. 2006;116:3229–3239. doi: 10.1172/JCI29867. PubMed DOI PMC
Landgren S., Engel J.A., Hyytia P., Zetterberg H., Blennow K., Jerlhag E. Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference. Behav. Brain Res. 2011;221:182–188. doi: 10.1016/j.bbr.2011.03.003. PubMed DOI
Zigman J.M., Jones J.E., Lee C.E., Saper C.B., Elmquist J.K. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 2006;494:528–548. doi: 10.1002/cne.20823. PubMed DOI PMC
Naleid A.M., Grace M.K., Cummings D.E., Levine A.S. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–2279. doi: 10.1016/j.peptides.2005.04.025. PubMed DOI
Quarta D., Di Francesco C., Melotto S., Mangiarini L., Heidbreder C., Hedou G. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem. Int. 2009;54:89–94. doi: 10.1016/j.neuint.2008.12.006. PubMed DOI
Skibicka K.P., Hansson C., Alvarez-Crespo M., Friberg P.A., Dickson S.L. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–137. doi: 10.1016/j.neuroscience.2011.02.016. PubMed DOI
Maric T., Sedki F., Ronfard B., Chafetz D., Shalev U. A limited role for ghrelin in heroin self-administration and food deprivation-induced reinstatement of heroin seeking in rats. Addict. Biol. 2012;17:613–622. doi: 10.1111/j.1369-1600.2011.00396.x. PubMed DOI
D’Cunha T.M., Sedki F., Macri J., Casola C., Shalev U. The effects of chronic food restriction on cue-induced heroin seeking in abstinent male rats. Psychopharmacology. 2013;225:241–250. doi: 10.1007/s00213-012-2810-1. PubMed DOI
Engel J.A., Nylander I., Jerlhag E. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice. Eur. Neuropsychopharmacol. 2015;25:2364–2371. doi: 10.1016/j.euroneuro.2015.10.004. PubMed DOI
Sustkova-Fiserova M., Jerabek P., Havlickova T., Kacer P., Krsiak M. Ghrelin receptor antagonism of morphine-induced accumbens dopamine release and behavioral stimulation in rats. Psychopharmacology. 2014;231:2899–2908. doi: 10.1007/s00213-014-3466-9. PubMed DOI
Sustkova-Fiserova M., Jerabek P., Havlickova T., Syslova K., Kacer P. Ghrelin and endocannabinoids participation in morphine-induced effects in the rat nucleus accumbens. Psychopharmacology. 2016;233:469–484. doi: 10.1007/s00213-015-4119-3. PubMed DOI
Moulin A., Demange L., Berge G., Gagne D., Ryan J., Mousseaux D., Heitz A., Perrissoud D., Locatelli V., Torsello A., et al. Toward potent ghrelin receptor ligands based on trisubstituted 1,2,4-triazole structure. 2. Synthesis and pharmacological in vitro and in vivo evaluations. J. Med. Chem. 2007;50:5790–5806. doi: 10.1021/jm0704550. PubMed DOI
Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA. 1988;85:5274–5278. doi: 10.1073/pnas.85.14.5274. PubMed DOI PMC
Di Chiara G. Nucleus accumbens shell and core dopamine: Differential role in behavior and addiction. Behav. Brain Res. 2002;137:75–114. doi: 10.1016/S0166-4328(02)00286-3. PubMed DOI
Jerabek P., Havlickova T., Puskina N., Charalambous C., Lapka M., Kacer P., Sustkova-Fiserova M. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats. Neurochem. Int. 2017;110:101–113. doi: 10.1016/j.neuint.2017.09.013. PubMed DOI
Pothos E., Rada P., Mark G.P., Hoebel B.G. Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 1991;566:348–350. doi: 10.1016/0006-8993(91)91724-F. PubMed DOI
Leone P., Pocock D., Wise R.A. Morphine-dopamine interaction: Ventral tegmental morphine increases nucleus accumbens dopamine release. Pharmacol. Biochem. Behav. 1991;39:469–472. doi: 10.1016/0091-3057(91)90210-S. PubMed DOI
De Vries T.J., Shippenberg T.S. Neural systems underlying opiate addiction. J. Neurosci. 2002;22:3321–3325. PubMed PMC
Hyman S.E., Malenka R.C., Nestler E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006;29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009. PubMed DOI
Johnson S.W., North R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 1992;12:483–488. PubMed PMC
Creed M.C., Ntamati N.R., Tan K.R. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front. Behav. Neurosci. 2014;8:8. doi: 10.3389/fnbeh.2014.00008. PubMed DOI PMC
Fields H.L., Margolis E.B. Understanding opioid reward. Trends Neurosci. 2015;38:217–225. doi: 10.1016/j.tins.2015.01.002. PubMed DOI PMC
Aono Y., Saigusa T., Mizoguchi N., Iwakami T., Takada K., Gionhaku N., Oi Y., Ueda K., Koshikawa N., Cools A.R. Role of GABA A receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur. J. Pharmacol. 2008;580:87–94. doi: 10.1016/j.ejphar.2007.10.020. PubMed DOI
Saigusa T., Aono Y., Mizoguchi N., Iwakami T., Takada K., Oi Y., Ueda K., Koshikawa N., Cools A.R. Role of GABA B receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur. J. Pharmacol. 2008;581:276–282. doi: 10.1016/j.ejphar.2007.12.008. PubMed DOI
Yoshida Y., Koide S., Hirose N., Takada K., Tomiyama K., Koshikawa N., Cools A.R. Fentanyl increases dopamine release in rat nucleus accumbens: Involvement of mesolimbic µ- and δ-2-opioid receptors. Neuroscience. 1999;92:1357–1365. doi: 10.1016/S0306-4522(99)00046-9. PubMed DOI
Chieng B., Williams J.T. Increased opioid inhibition of GABA release in nucleus accumbens during morphine withdrawal. J. Neurosci. 1998;18:7033–7039. PubMed PMC
Harvey J., Lacey M.G. Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation. Pt 1J. Physiol. 1996;492:143–154. doi: 10.1113/jphysiol.1996.sp021296. PubMed DOI PMC
Nicola S.M., Malenka R.C. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci. 1997;17:5697–5710. PubMed PMC
McBride W.J., Murphy J.M., Ikemoto S. Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behav. Brain Res. 1999;101:129–152. doi: 10.1016/S0166-4328(99)00022-4. PubMed DOI
Koob G.F., Volkow N.D. Neurocircuitry of Addiction. Neuropsychopharmacology. 2010;35:217–238. doi: 10.1038/npp.2009.110. PubMed DOI PMC
Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front. Pharmacol. 2015;6:6. PubMed PMC
Fattore L., Deiana S., Spano S.M., Cossu G., Fadda P., Scherma M., Fratta W. Endocannabinoid system and opioid addiction: Behavioural aspects. Pharmacol. Biochem. Behav. 2005;81:343–359. doi: 10.1016/j.pbb.2005.01.031. PubMed DOI
Robledo P., Berrendero F., Ozaita A., Maldonado R. Advances in the field of cannabinoid-opioid cross-talk. Addict. Biol. 2008;13:213–224. doi: 10.1111/j.1369-1600.2008.00107.x. PubMed DOI
Trigo J.M., Martin-Garcia E., Berrendero F., Robledo P., Maldonado R. The endogenous opioid system: A common substrate in drug addiction. Drug Alcohol Depend. 2010;108:183–194. doi: 10.1016/j.drugalcdep.2009.10.011. PubMed DOI
Vigano D., Rubino T., Parolaro D. Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacol. Biochem. Behav. 2005;81:360–368. doi: 10.1016/j.pbb.2005.01.021. PubMed DOI
Maldonado R., Valverde O., Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29:225–232. doi: 10.1016/j.tins.2006.01.008. PubMed DOI
Chaperon F., Soubrie P., Puech A.J., Thiebot M.H. Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology. 1998;135:324–332. doi: 10.1007/s002130050518. PubMed DOI
Navarro M., Carrera M.R., Fratta W., Valverde O., Cossu G., Fattore L., Chowen J.A., Gomez R., del Arco I., Villanua M.A., et al. Functional interaction between opioid and cannabinoid receptors in drug self-administration. J. Neurosci. 2001;21:5344–5350. PubMed PMC
Singh M.E., Verty A.N., McGregor I.S., Mallet P.E. A cannabinoid receptor antagonist attenuates conditioned place preference but not behavioural sensitization to morphine. Brain Res. 2004;1026:244–253. doi: 10.1016/j.brainres.2004.08.027. PubMed DOI
Caille S., Parsons L.H. SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats. Eur. J. Neurosci. 2003;18:3145–3149. doi: 10.1111/j.1460-9568.2003.02961.x. PubMed DOI
Solinas M., Panlilio L.V., Antoniou K., Pappas L.A., Goldberg S.R. The cannabinoid CB1 antagonist N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR-141716A) differentially alters the reinforcing effects of heroin under continuous reinforcement, fixed ratio, and progressive ratio schedules of drug self-administration in rats. J. Pharmacol. Exp. Ther. 2003;306:93–102. PubMed
Solinas M., Panlilio L.V., Tanda G., Makriyannis A., Matthews S.A., Goldberg S.R. Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology. 2005;30:2046–2057. doi: 10.1038/sj.npp.1300754. PubMed DOI
Caille S., Parsons L.H. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology. 2006;31:804–813. doi: 10.1038/sj.npp.1300848. PubMed DOI
Pickel V.M., Chan J., Kash T.L., Rodriguez J.J., MacKie K. Compartment-specific localization of cannabinoid 1 (CB1) and µ-opioid receptors in rat nucleus accumbens. Neuroscience. 2004;127:101–112. doi: 10.1016/j.neuroscience.2004.05.015. PubMed DOI
Tanda G., Pontieri F.E., Di Chiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science. 1997;276:2048–2050. doi: 10.1126/science.276.5321.2048. PubMed DOI
Caille S., Alvarez-Jaimes L., Polis I., Stouffer D.G., Parsons L.H. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J. Neurosci. 2007;27:3695–3702. doi: 10.1523/JNEUROSCI.4403-06.2007. PubMed DOI PMC
Zhang H.Y., Gao M., Liu Q.R., Bi G.H., Li X., Yang H.J., Gardner E.L., Wu J., Xi Z.X. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl. Acad. Sci. USA. 2014;111:E5007–E5015. doi: 10.1073/pnas.1413210111. PubMed DOI PMC
Vigano D., Valenti M., Cascio M.G., Di Marzo V., Parolaro D., Rubino T. Changes in endocannabinoid levels in a rat model of behavioural sensitization to morphine. Eur. J. Neurosci. 2004;20:1849–1857. doi: 10.1111/j.1460-9568.2004.03645.x. PubMed DOI
Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949. doi: 10.1126/science.1470919. PubMed DOI
Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., Kaminski N.E., Schatz A.R., Gopher A., Almog S., Martin B.R., Compton D.R., et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995;50:83–90. doi: 10.1016/0006-2952(95)00109-D. PubMed DOI
Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., Waku K. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995;215:89–97. doi: 10.1006/bbrc.1995.2437. PubMed DOI
Freund T.F., Katona I., Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003;83:1017–1066. doi: 10.1152/physrev.00004.2003. PubMed DOI
Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003;4:873–884. doi: 10.1038/nrn1247. PubMed DOI
Fride E. Endocannabinoids in the central nervous system: From neuronal networks to behavior. Curr. Drug Targets CNS Neurol. Disord. 2005;4:633–642. doi: 10.2174/156800705774933069. PubMed DOI
Solinas M., Goldberg S.R., Piomelli D. The endocannabinoid system in brain reward processes. Br. J. Pharmacol. 2008;154:369–383. doi: 10.1038/bjp.2008.130. PubMed DOI PMC
Di Marzo V., Fontana A., Cadas H., Schinelli S., Cimino G., Schwartz J.C., Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372:686–691. doi: 10.1038/372686a0. PubMed DOI
Piomelli D., Tarzia G., Duranti A., Tontini A., Mor M., Compton T.R., Dasse O., Monaghan E.P., Parrott J.A., Putman D. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597) CNS Drug Rev. 2006;12:21–38. doi: 10.1111/j.1527-3458.2006.00021.x. PubMed DOI PMC
Hillard C.J., Weinlander K.M., Stuhr K.L. Contributions of endocannabinoid signaling to psychiatric disorders in humans: Genetic and biochemical evidence. Neuroscience. 2012;204:207–229. doi: 10.1016/j.neuroscience.2011.11.020. PubMed DOI PMC
Lupica C.R., Riegel A.C., Hoffman A.F. Marijuana and cannabinoid regulation of brain reward circuits. Br. J. Pharmacol. 2004;143:227–234. doi: 10.1038/sj.bjp.0705931. PubMed DOI PMC
Cani P.D., Montoya M.L., Neyrinck A.M., Delzenne N.M., Lambert D.M. Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. Br. J. Nutr. 2004;92:757–761. doi: 10.1079/BJN20041256. PubMed DOI
Kola B., Farkas I., Christ-Crain M., Wittmann G., Lolli F., Amin F., Harvey-White J., Liposits Z., Kunos G., Grossman A.B., et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE. 2008;3:e1797. doi: 10.1371/journal.pone.0001797. PubMed DOI PMC
Folgueira C., Seoane L.M., Casanueva F.F. The brain-stomach connection. Front. Horm. Res. 2014;42:83–92. PubMed
Al Massadi O., Lopez M., Tschop M., Dieguez C., Nogueiras R. Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends Neurosci. 2017;40:167–180. doi: 10.1016/j.tins.2016.12.003. PubMed DOI
Senin L.L., Al-Massadi O., Folgueira C., Castelao C., Pardo M., Barja-Fernandez S., Roca-Rivada A., Amil M., Crujeiras A.B., Garcia-Caballero T., et al. The gastric CB1 receptor modulates ghrelin production through the mTOR pathway to regulate food intake. PLoS ONE. 2013;8:e80339. doi: 10.1371/journal.pone.0080339. PubMed DOI PMC
Alen F., Crespo I., Ramirez-Lopez M.T., Jagerovic N., Goya P., de Fonseca F.R., de Heras R.G., Orio L. Ghrelin-induced orexigenic effect in rats depends on the metabolic status and is counteracted by peripheral CB1 receptor antagonism. PLoS ONE. 2013;8:e60918. doi: 10.1371/journal.pone.0060918. PubMed DOI PMC
Tucci S.A., Rogers E.K., Korbonits M., Kirkham T.C. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br. J. Pharmacol. 2004;143:520–523. doi: 10.1038/sj.bjp.0705968. PubMed DOI PMC
Janssen P.A., Jageneau A.H., Demoen P.J., van de Westeringh C., De Canniere J.H., Raeymaekers A.H., Wouters M.S., Sanczuk S., Hermans B.K. Compounds related to pethidine-II. Mannich bases derived from various esters of 4-carboxy-4-phenylpiperidine and acetophenones. J. Med. Pharm. Chem. 1959;1:309–317. doi: 10.1021/jm50005a002. PubMed DOI
Pasternak G.W., Pan Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013;65:1257–1317. doi: 10.1124/pr.112.007138. PubMed DOI PMC
Henthorn T.K., Liu Y., Mahapatro M., Ng K.Y. Active transport of fentanyl by the blood-brain barrier. J. Pharmacol. Exp. Ther. 1999;289:1084–1089. PubMed
Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx J. Am. Soc. Exp. NeuroTher. 2005;2:54–62. doi: 10.1602/neurorx.2.1.54. PubMed DOI PMC
Mounteney J., Giraudon I., Denissov G., Griffiths P. Fentanyls: Are we missing the signs? Highly potent and on the rise in Europe. Int. J. Drug Policy. 2015;26:626–631. doi: 10.1016/j.drugpo.2015.04.003. PubMed DOI
Sun J.Y., Yang J.Y., Wang F., Wang J.Y., Song W., Su G.Y., Dong Y.X., Wu C.F. Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats. Addict. Biol. 2011;16:540–550. doi: 10.1111/j.1369-1600.2010.00244.x. PubMed DOI
Basaran N.F., Buyukuysal R.L., Sertac Yilmaz M., Aydin S., Cavun S., Millington W.R. The effect of Gly-Gln [β-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats. Neuropeptides. 2016;58:23–29. doi: 10.1016/j.npep.2016.01.007. PubMed DOI
Xi Z.X., Stein E.A. Increased mesolimbic GABA concentration blocks heroin self-administration in the rat. J. Pharmacol. Exp. Ther. 2000;294:613–619. PubMed
Ting A.K.R., van der Kooy D. The neurobiology of opiate motivation. Cold Spring Harb. Perspect. Med. 2012;2:a012096. PubMed PMC
Soria-Gomez E., Matias I., Rueda-Orozco P.E., Cisneros M., Petrosino S., Navarro L., Di Marzo V., Prospero-Garcia O. Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br. J. Pharmacol. 2007;151:1109–1116. doi: 10.1038/sj.bjp.0707313. PubMed DOI PMC
Cruz M.T., Herman M.A., Cote D.M., Ryabinin A.E., Roberto M. Ghrelin increases GABAergic transmission and interacts with ethanol actions in the rat central nucleus of the amygdala. Neuropsychopharmacology. 2013;38:364–375. doi: 10.1038/npp.2012.190. PubMed DOI PMC
Lopez Soto E.J., Agosti F., Cabral A., Mustafa E.R., Damonte V.M., Gandini M.A., Rodriguez S., Castrogiovanni D., Felix R., Perello M., Raingo J. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. J. Gen. Physiol. 2015;146:205–219. doi: 10.1085/jgp.201511383. PubMed DOI PMC
Fiserova M., Consolo S., Krsiak M. Chronic morphine induces long-lasting changes in acetylcholine release in rat nucleus accumbens core and shell: An in vivo microdialysis study. Psychopharmacology. 1999;142:85–94. doi: 10.1007/s002130050866. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict. Biol. 2011;16:82–91. doi: 10.1111/j.1369-1600.2010.00231.x. PubMed DOI PMC
Jerlhag E., Janson A.C., Waters S., Engel J.A. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE. 2012;7:e49557. doi: 10.1371/journal.pone.0049557. PubMed DOI PMC
Holst B., Cygankiewicz A., Jensen T.H., Ankersen M., Schwartz T.W. High constitutive signaling of the ghrelin receptor—Identification of a potent inverse agonist. Mol. Endocrinol. 2003;17:2201–2210. doi: 10.1210/me.2003-0069. PubMed DOI
Justinova Z., Goldberg S.R., Heishman S.J., Tanda G. Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol. Biochem. Behav. 2005;81:285–299. doi: 10.1016/j.pbb.2005.01.026. PubMed DOI PMC
Oleson E.B., Beckert M.V., Morra J.T., Lansink C.S., Cachope R., Abdullah R.A., Loriaux A.L., Schetters D., Pattij T., Roitman M.F., et al. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron. 2012;73:360–373. doi: 10.1016/j.neuron.2011.11.018. PubMed DOI PMC
Wang X.Q., Ma J., Cui W., Yuan W.X., Zhu G., Yang Q., Heng L.J., Gao G.D. The endocannabinoid system regulates synaptic transmission in nucleus accumbens by increasing DAGL-α expression following short-term morphine withdrawal. Br. J. Pharmacol. 2016;173:1143–1153. doi: 10.1111/bph.12969. PubMed DOI PMC
Gomes I., Fujita W., Chandrakala M.V., Devi L.A. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. Prog. Mol. Biol. Transl. Sci. 2013;117:207–265. PubMed PMC
Guan X.M., Yu H., Palyha O.C., McKee K.K., Feighner S.D., Sirinathsinghji D.J., Smith R.G., Van der Ploeg L.H., Howard A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 1997;48:23–29. doi: 10.1016/S0169-328X(97)00071-5. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Andersson M., Svensson L., Engel J.A. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: Implications for its involvement in brain reward. Addict. Biol. 2006;11:45–54. doi: 10.1111/j.1369-1600.2006.00002.x. PubMed DOI
Lupica C.R., Riegel A.C. Endocannabinoid release from midbrain dopamine neurons: A potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology. 2005;48:1105–1116. doi: 10.1016/j.neuropharm.2005.03.016. PubMed DOI
Van Bockstaele E.J., Pickel V.M. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 1995;682:215–221. doi: 10.1016/0006-8993(95)00334-M. PubMed DOI
Svingos A.L., Moriwaki A., Wang J.B., Uhl G.R., Pickel V.M. μ-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J. Neurosci. 1997;17:2585–2594. PubMed PMC
Groenewegen H.J., Wright C.I., Beijer A.V., Voorn P. Convergence and segregation of ventral striatal inputs and outputs. Ann. N. Y. Acad. Sci. 1999;877:49–63. doi: 10.1111/j.1749-6632.1999.tb09260.x. PubMed DOI
Steffensen S.C., Svingos A.L., Pickel V.M., Henriksen S.J. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J. Neurosci. 1998;18:8003–8015. PubMed PMC
Chang H.T., Kitai S.T. Projection neurons of the nucleus accumbens: An intracellular labeling study. Brain Res. 1985;347:112–116. doi: 10.1016/0006-8993(85)90894-7. PubMed DOI
Christie M.J., James L.B., Beart P.M. An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat. J. Neurochem. 1985;45:477–482. doi: 10.1111/j.1471-4159.1985.tb04013.x. PubMed DOI
Christie M.J., Summers R.J., Stephenson J.A., Cook C.J., Beart P.M. Excitatory amino acid projections to the nucleus accumbens septi in the rat: A retrograde transport study utilizing d[3H]aspartate and [3H]GABA. Neuroscience. 1987;22:425–439. doi: 10.1016/0306-4522(87)90345-9. PubMed DOI
Pennartz C.M., Kitai S.T. Hippocampal inputs to identified neurons in an in vitro slice preparation of the rat nucleus accumbens: Evidence for feed-forward inhibition. J. Neurosci. 1991;11:2838–2847. PubMed PMC
Brown M.T., Tan K.R., O’Connor E.C., Nikonenko I., Muller D., Luscher C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492:452–456. doi: 10.1038/nature11657. PubMed DOI
Laviolette S.R., van der Kooy D. GABA(A) receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non-dopaminergic neural motivational systems. Eur. J. Neurosci. 2001;13:1009–1015. doi: 10.1046/j.1460-9568.2001.01458.x. PubMed DOI
Wise R.A., Bozarth M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987;94:469–492. doi: 10.1037/0033-295X.94.4.469. PubMed DOI
Zhang L., Walker E.A., Sutherland J., Young A.M. Discriminative stimulus effects of two doses of fentanyl in rats: Pharmacological selectivity and effect of training dose on agonist and antagonist effects of mu opioids. Psychopharmacology. 2000;148:136–145. doi: 10.1007/s002130050035. PubMed DOI
Megens A.A., Artois K., Vermeire J., Meert T., Awouters F.H. Comparison of the analgesic and intestinal effects of fentanyl and morphine in rats. J. Pain Symptom Manag. 1998;15:253–257. doi: 10.1016/S0885-3924(97)00371-0. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology. 2010;211:415–422. doi: 10.1007/s00213-010-1907-7. PubMed DOI PMC
Clifford P.S., Rodriguez J., Schul D., Hughes S., Kniffin T., Hart N., Eitan S., Brunel L., Fehrentz J.A., Martinez J., et al. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict. Biol. 2012;17:956–963. doi: 10.1111/j.1369-1600.2011.00339.x. PubMed DOI PMC
Hansson C., Shirazi R.H., Naslund J., Vogel H., Neuber C., Holm G., Anckarsater H., Dickson S.L., Eriksson E., et al. Ghrelin influences novelty seeking behavior in rodents and men. PLoS ONE. 2012;7:e50409. doi: 10.1371/journal.pone.0050409. PubMed DOI PMC
Skibicka K.P., Hansson C., Egecioglu E., Dickson S.L. Role of ghrelin in food reward: Impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict. Biol. 2012;17:95–107. doi: 10.1111/j.1369-1600.2010.00294.x. PubMed DOI PMC
Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Academic Press/Elsevier; Amsterdam, The Netherlands: 2006.
Syslova K., Rambousek L., Kuzma M., Najmanova V., Bubenikova-Valesova V., Slamberova R., Kacer P. Monitoring of dopamine and its metabolites in brain microdialysates: Method combining freeze-drying with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2011;1218:3382–3391. doi: 10.1016/j.chroma.2011.02.006. PubMed DOI
Ruda-Kucerova J., Amchova P., Havlickova T., Jerabek P., Babinska Z., Kacer P., Syslova K., Sulcova A., Sustkova-Fiserova M. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J. Biol. Psychiatry. 2015;16:521–535. doi: 10.3109/15622975.2015.1077991. PubMed DOI
Acquas E., Di Chiara G. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J. Neurochem. 1992;58:1620–1625. doi: 10.1111/j.1471-4159.1992.tb10033.x. PubMed DOI
Rada P.V., Mark G.P., Taylor K.M., Hoebel B.G. Morphine and naloxone, i.p. or locally, affect extracellular acetylcholine in the accumbens and prefrontal cortex. Pharmacol. Biochem. Behav. 1996;53:809–816. doi: 10.1016/0091-3057(95)02078-0. PubMed DOI
The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions