Alterations in Rat Accumbens Dopamine, Endocannabinoids and GABA Content During WIN55,212-2 Treatment: The Role of Ghrelin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33379212
PubMed Central
PMC7795825
DOI
10.3390/ijms22010210
PII: ijms22010210
Knihovny.cz E-zdroje
- Klíčová slova
- 2-arachidonoylglycerol/2-AG, GABA, addiction, anandamide/AEA, dopamine, dopamine metabolism, endocannabinoids, ghrelin/GHS-R1A, nucleus accumbens shell microdialysis, synthetic cannabinoid WIN55,212-2,
- MeSH
- benzoxaziny aplikace a dávkování MeSH
- dopamin metabolismus MeSH
- endokanabinoidy metabolismus MeSH
- GABA metabolismus MeSH
- ghrelin metabolismus MeSH
- glyceridy metabolismus MeSH
- glycin aplikace a dávkování analogy a deriváty MeSH
- kyseliny arachidonové metabolismus MeSH
- morfoliny aplikace a dávkování MeSH
- naftaleny aplikace a dávkování MeSH
- nucleus accumbens účinky léků metabolismus MeSH
- polynenasycené alkamidy metabolismus MeSH
- potkani Wistar MeSH
- preklinické hodnocení léčiv MeSH
- triazoly aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone MeSH Prohlížeč
- anandamide MeSH Prohlížeč
- benzoxaziny MeSH
- dopamin MeSH
- endokanabinoidy MeSH
- GABA MeSH
- ghrelin MeSH
- glyceridy MeSH
- glyceryl 2-arachidonate MeSH Prohlížeč
- glycin MeSH
- kyseliny arachidonové MeSH
- morfoliny MeSH
- N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide MeSH Prohlížeč
- naftaleny MeSH
- polynenasycené alkamidy MeSH
- triazoly MeSH
The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2-induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.
Zobrazit více v PubMed
Volkow N.D., Hampson A.J., Baler R.D. Don’t Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward. Annu. Rev. Pharm. Toxicol. 2017;57:285–308. doi: 10.1146/annurev-pharmtox-010716-104615. PubMed DOI
Zehra A., Burns J., Liu C.K., Manza P., Wiers C.E., Volkow N.D., Wang G.J. Cannabis Addiction and the Brain: A Review. J. Neuroimmune Pharm. 2018;13:438–452. doi: 10.1007/s11481-018-9782-9. PubMed DOI PMC
Parsons L.H., Hurd Y.L. Endocannabinoid signalling in reward and addiction. Nat. Rev. Neurosci. 2015;16:579–594. doi: 10.1038/nrn4004. PubMed DOI PMC
Hwang E.K., Lupica C.R. Altered Corticolimbic Control of the Nucleus Accumbens by Long-term Delta(9)-Tetrahydrocannabinol Exposure. Biol. Psychiatry. 2020;87:619–631. doi: 10.1016/j.biopsych.2019.07.024. PubMed DOI PMC
Di Marzo V., Melck D., Bisogno T., De Petrocellis L. Endocannabinoids: Endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 1998;21:521–528. doi: 10.1016/S0166-2236(98)01283-1. PubMed DOI
Mechoulam R., Fride E., Di Marzo V. Endocannabinoids. Eur. J. Pharmacol. 1998;359:1–18. doi: 10.1016/S0014-2999(98)00649-9. PubMed DOI
Tanda G., Goldberg S.R. Cannabinoids: Reward, dependence, and underlying neurochemical mechanisms—A review of recent preclinical data. Psychopharmacology. 2003;169:115–134. doi: 10.1007/s00213-003-1485-z. PubMed DOI
Scherma M., Masia P., Satta V., Fratta W., Fadda P., Tanda G. Brain activity of anandamide: A rewarding bliss? Acta Pharm. Sin. 2019;40:309–323. doi: 10.1038/s41401-018-0075-x. PubMed DOI PMC
Zlebnik N.E., Cheer J.F. Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions. J. Neurosci. 2016;36:10230–10238. doi: 10.1523/JNEUROSCI.1712-16.2016. PubMed DOI PMC
Herkenham M. Characterization and localization of cannabinoid receptors in brain: An in vitro technique using slide-mounted tissue sections. NIDA Res. Monogr. 1991;112:129–145. PubMed
Matsuda L.A., Lolait S.J., Brownstein M.J., Young A.C., Bonner T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–564. doi: 10.1038/346561a0. PubMed DOI
Spiller K.J., Bi G.H., He Y., Galaj E., Gardner E.L., Xi Z.X. Cannabinoid CB1 and CB2 receptor mechanisms underlie cannabis reward and aversion in rats. Br. J. Pharm. 2019;176:1268–1281. doi: 10.1111/bph.14625. PubMed DOI PMC
Compton D.R., Gold L.H., Ward S.J., Balster R.L., Martin B.R. Aminoalkylindole analogs: Cannabimimetic activity of a class of compounds structurally distinct from delta 9-tetrahydrocannabinol. J. Pharmacol. Exp. Ther. 1992;263:1118–1126. PubMed
D’Ambra T.E., Estep K.G., Bell M.R., Eissenstat M.A., Josef K.A., Ward S.J., Haycock D.A., Baizman E.R., Casiano F.M., Beglin N.C., et al. Conformationally restrained analogues of pravadoline: Nanomolar potent, enantioselective, (aminoalkyl)indole agonists of the cannabinoid receptor. J. Med. Chem. 1992;35:124–135. doi: 10.1021/jm00079a016. PubMed DOI
Koob G.F., Volkow N.D. Neurocircuitry of Addiction. Neuropsychopharmacology. 2010;35:217–238. doi: 10.1038/npp.2009.110. PubMed DOI PMC
Hyman S.E., Malenka R.C., Nestler E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006;29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009. PubMed DOI
Nestler E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 2005;8:1445–1449. doi: 10.1038/nn1578. PubMed DOI
Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA. 1988;85:5274–5278. doi: 10.1073/pnas.85.14.5274. PubMed DOI PMC
Bloomfield M.A., Ashok A.H., Volkow N.D., Howes O.D. The effects of Delta(9)-tetrahydrocannabinol on the dopamine system. Nature. 2016;539:369–377. doi: 10.1038/nature20153. PubMed DOI PMC
Lupica C.R., Riegel A.C., Hoffman A.F. Marijuana and cannabinoid regulation of brain reward circuits. Br. J. Pharm. 2004;143:227–234. doi: 10.1038/sj.bjp.0705931. PubMed DOI PMC
Panlilio L.V., Justinova Z., Goldberg S.R. Inhibition of FAAH and activation of PPAR: New approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol. Ther. 2013;138:84–102. doi: 10.1016/j.pharmthera.2013.01.003. PubMed DOI PMC
Wijayendran S.B., O’Neill A., Bhattacharyya S. The effects of cannabis use on salience attribution: A systematic review. Acta Neuropsychiatr. 2018;30:43–57. doi: 10.1017/neu.2016.58. PubMed DOI PMC
Gardner E.L. Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharm. Biochem. Behav. 2005;81:263–284. doi: 10.1016/j.pbb.2005.01.032. PubMed DOI
Mackie K. Cannabinoid receptor homo- and heterodimerization. Life Sci. 2005;77:1667–1673. doi: 10.1016/j.lfs.2005.05.011. PubMed DOI
Tanda G., Pontieri F.E., Di Chiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science. 1997;276:2048–2050. doi: 10.1126/science.276.5321.2048. PubMed DOI
Panlilio L.V., Goldberg S.R., Justinova Z. Cannabinoid abuse and addiction: Clinical and preclinical findings. Clin. Pharm. 2015;97:616–627. doi: 10.1002/cpt.118. PubMed DOI PMC
Edwards A., Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci. Biobehav. Rev. 2016;66:33–53. doi: 10.1016/j.neubiorev.2016.03.032. PubMed DOI
Kola B., Farkas I., Christ-Crain M., Wittmann G., Lolli F., Amin F., Harvey-White J., Liposits Z., Kunos G., Grossman A.B., et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE. 2008;3:e1797. doi: 10.1371/journal.pone.0001797. PubMed DOI PMC
Tucci S.A., Rogers E.K., Korbonits M., Kirkham T.C. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br. J. Pharm. 2004;143:520–523. doi: 10.1038/sj.bjp.0705968. PubMed DOI PMC
Lim C.T., Kola B., Feltrin D., Perez-Tilve D., Tschop M.H., Grossman A.B., Korbonits M. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol. Cell. Endocrinol. 2013;365:303–308. doi: 10.1016/j.mce.2012.11.007. PubMed DOI PMC
Holst B., Cygankiewicz A., Jensen T.H., Ankersen M., Schwartz T.W. High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. Mol. Endocrinol. 2003;17:2201–2210. doi: 10.1210/me.2003-0069. PubMed DOI
Mear Y., Enjalbert A., Thirion S. GHS-R1a constitutive activity and its physiological relevance. Front. Neurosci. 2013;7:87. doi: 10.3389/fnins.2013.00087. PubMed DOI PMC
Muller T.D., Nogueiras R., Andermann M.L., Andrews Z.B., Anker S.D., Argente J., Batterham R.L., Benoit S.C., Bowers C.Y., Broglio F., et al. Ghrelin. Mol. Metab. 2015;4:437–460. doi: 10.1016/j.molmet.2015.03.005. PubMed DOI PMC
Wellman M., Abizaid A. Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target. eNeuro. 2015;2 doi: 10.1523/ENEURO.0053-14.2015. PubMed DOI PMC
Ferrini F., Salio C., Lossi L., Merighi A. Ghrelin in central neurons. Curr. Neuropharmacol. 2009;7:37–49. doi: 10.2174/157015909787602779. PubMed DOI PMC
Guan X.M., Yu H., Palyha O.C., McKee K.K., Feighner S.D., Sirinathsinghji D.J., Smith R.G., Van der Ploeg L.H., Howard A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 1997;48:23–29. doi: 10.1016/S0169-328X(97)00071-5. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Andersson M., Svensson L., Engel J.A. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: Implications for its involvement in brain reward. Addict. Biol. 2006;11:45–54. doi: 10.1111/j.1369-1600.2006.00002.x. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system. Addict. Biol. 2011;16:82–91. doi: 10.1111/j.1369-1600.2010.00231.x. PubMed DOI PMC
Abizaid A., Liu Z.W., Andrews Z.B., Shanabrough M., Borok E., Elsworth J.D., Roth R.H., Sleeman M.W., Picciotto M.R., Tschop M.H., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Investig. 2006;116:3229–3239. doi: 10.1172/JCI29867. PubMed DOI PMC
Maldonado R., Valverde O., Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29:225–232. doi: 10.1016/j.tins.2006.01.008. PubMed DOI
Manzanares J., Cabanero D., Puente N., Garcia-Gutierrez M.S., Grandes P., Maldonado R. Role of the endocannabinoid system in drug addiction. Biochem. Pharm. 2018;157:108–121. doi: 10.1016/j.bcp.2018.09.013. PubMed DOI
Kalafateli A.L., Vallof D., Jornulf J.W., Heilig M., Jerlhag E. A cannabinoid receptor antagonist attenuates ghrelin-induced activation of the mesolimbic dopamine system in mice. Physiol. Behav. 2018;184:211–219. doi: 10.1016/j.physbeh.2017.12.005. PubMed DOI
Sustkova-Fiserova M., Jerabek P., Havlickova T., Syslova K., Kacer P. Ghrelin and endocannabinoids participation in morphine-induced effects in the rat nucleus accumbens. Psychopharmacology. 2016;233:469–484. doi: 10.1007/s00213-015-4119-3. PubMed DOI
Sustkova-Fiserova M., Charalambous C., Havlickova T., Lapka M., Jerabek P., Puskina N., Syslova K. Alterations in Rat Accumbens Endocannabinoid and GABA Content during Fentanyl Treatment: The Role of Ghrelin. Int. J. Mol. Sci. 2017;18:2486. doi: 10.3390/ijms18112486. PubMed DOI PMC
Zangen A., Solinas M., Ikemoto S., Goldberg S.R., Wise R.A. Two brain sites for cannabinoid reward. J. Neurosci. 2006;26:4901–4907. doi: 10.1523/JNEUROSCI.3554-05.2006. PubMed DOI PMC
Wise R.A., Bozarth M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987;94:469–492. doi: 10.1037/0033-295X.94.4.469. PubMed DOI
Polissidis A., Chouliara O., Galanopoulos A., Marselos M., Papadopoulou-Daifoti Z., Antoniou K. Behavioural and dopaminergic alterations induced by a low dose of WIN 55,212-2 in a conditioned place preference procedure. Life Sci. 2009;85:248–254. doi: 10.1016/j.lfs.2009.05.015. PubMed DOI
Polissidis A., Galanopoulos A., Naxakis G., Papahatjis D., Papadopoulou-Daifoti Z., Antoniou K. The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int. J. Neuropsychopharmacol. 2013;16:393–403. doi: 10.1017/S1461145712000156. PubMed DOI
Koob G.F., Volkow N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–773. doi: 10.1016/S2215-0366(16)00104-8. PubMed DOI PMC
Jerlhag E., Egecioglu E., Landgren S., Salome N., Heilig M., Moechars D., Datta R., Perrissoud D., Dickson S.L., Engel J.A. Requirement of central ghrelin signaling for alcohol reward. Proc. Natl. Acad. Sci. USA. 2009;106:11318–11323. doi: 10.1073/pnas.0812809106. PubMed DOI PMC
Jerlhag E., Engel J.A. Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend. 2011;117:126–131. doi: 10.1016/j.drugalcdep.2011.01.010. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Engel J.A. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology. 2010;211:415–422. doi: 10.1007/s00213-010-1907-7. PubMed DOI PMC
Engel J.A., Nylander I., Jerlhag E. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice. Eur. Neuropsychopharmacol. 2015;25:2364–2371. doi: 10.1016/j.euroneuro.2015.10.004. PubMed DOI
Sustkova-Fiserova M., Jerabek P., Havlickova T., Kacer P., Krsiak M. Ghrelin receptor antagonism of morphine-induced accumbens dopamine release and behavioral stimulation in rats. Psychopharmacology. 2014;231:2899–2908. doi: 10.1007/s00213-014-3466-9. PubMed DOI
Jerabek P., Havlickova T., Puskina N., Charalambous C., Lapka M., Kacer P., Sustkova-Fiserova M. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats. Neurochem. Int. 2017;110:101–113. doi: 10.1016/j.neuint.2017.09.013. PubMed DOI
Vlachou S., Panagis G. Regulation of brain reward by the endocannabinoid system: A critical review of behavioral studies in animals. Curr. Pharm. Des. 2014;20:2072–2088. doi: 10.2174/13816128113199990433. PubMed DOI
Hoffman A.F., Lupica C.R. Synaptic targets of Delta9-tetrahydrocannabinol in the central nervous system. Cold Spring Harb. Perspect. Med. 2013;3 doi: 10.1101/cshperspect.a012237. PubMed DOI PMC
Covey D.P., Wenzel J.M., Cheer J.F. Cannabinoid modulation of drug reward and the implications of marijuana legalization. Brain Res. 2015;1628:233–243. doi: 10.1016/j.brainres.2014.11.034. PubMed DOI PMC
Chen J.P., Paredes W., Lowinson J.H., Gardner E.L. Strain-specific facilitation of dopamine efflux by delta 9-tetrahydrocannabinol in the nucleus accumbens of rat: An in vivo microdialysis study. Neurosci. Lett. 1991;129:136–180. doi: 10.1016/0304-3940(91)90739-G. PubMed DOI
Chen J., Marmur R., Pulles A., Paredes W., Gardner E.L. Ventral tegmental microinjection of delta 9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: Evidence for local neural action by marijuana’s psychoactive ingredient. Brain Res. 1993;621:65–70. doi: 10.1016/0006-8993(93)90298-2. PubMed DOI
Navarro M., Fernandez-Ruiz J.J., de Miguel R., Hernandez M.L., Cebeira M., Ramos J.A. An acute dose of delta 9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav. Brain Res. 1993;57:37–46. doi: 10.1016/0166-4328(93)90059-Y. PubMed DOI
Polissidis A., Chouliara O., Galanopoulos A., Rentesi G., Dosi M., Hyphantis T., Marselos M., Papadopoulou-Daifoti Z., Nomikos G.G., Spyraki C., et al. Individual differences in the effects of cannabinoids on motor activity, dopaminergic activity and DARPP-32 phosphorylation in distinct regions of the brain. Int. J. Neuropsychopharmacol. 2010;13:1175–1191. doi: 10.1017/S1461145709991003. PubMed DOI
Sustkova-Fiserova M., Puskina N., Havlickova T., Lapka M., Syslova K., Pohorala V., Charalambous C. Ghrelin receptor antagonism of fentanyl-induced conditioned place preference, intravenous self-administration, and dopamine release in the nucleus accumbens in rats. Addict. Biol. 2019;25:e12845. doi: 10.1111/adb.12845. PubMed DOI
Jerlhag E., Egecioglu E., Dickson S.L., Douhan A., Svensson L., Engel J.A. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict. Biol. 2007;12:6–16. doi: 10.1111/j.1369-1600.2006.00041.x. PubMed DOI
Jiang H., Betancourt L., Smith R.G. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol. Endocrinol. 2006;20:1772–1785. doi: 10.1210/me.2005-0084. PubMed DOI
Jerlhag E., Janson A.C., Waters S., Engel J.A. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats. PLoS ONE. 2012;7:e49557. doi: 10.1371/journal.pone.0049557. PubMed DOI PMC
Serrenho D., Santos S.D., Carvalho A.L. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front. Cell. Neurosci. 2019;13:205. doi: 10.3389/fncel.2019.00205. PubMed DOI PMC
Castaneda T.R., Tong J., Datta R., Culler M., Tschop M.H. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocr. 2010;31:44–60. doi: 10.1016/j.yfrne.2009.10.008. PubMed DOI
Lopez Soto E.J., Agosti F., Cabral A., Mustafa E.R., Damonte V.M., Gandini M.A., Rodriguez S., Castrogiovanni D., Felix R., Perello M., et al. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. J. Gen. Physiol. 2015;146:205–219. doi: 10.1085/jgp.201511383. PubMed DOI PMC
Friend L., Weed J., Sandoval P., Nufer T., Ostlund I., Edwards J.G. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana. J. Neurosci. 2017;37:10943–10954. doi: 10.1523/JNEUROSCI.0190-17.2017. PubMed DOI PMC
Kern A., Albarran-Zeckler R., Walsh H.E., Smith R.G. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron. 2012;73:317–332. doi: 10.1016/j.neuron.2011.10.038. PubMed DOI PMC
Manzoni O.J., Bockaert J. Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur. J. Pharmacol. 2001;412:R3–R5. doi: 10.1016/S0014-2999(01)00723-3. PubMed DOI
Aono Y., Saigusa T., Mizoguchi N., Iwakami T., Takada K., Gionhaku N., Oi Y., Ueda K., Koshikawa N., Cools A.R. Role of GABAA receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur. J. Pharmacol. 2008;580:87–94. doi: 10.1016/j.ejphar.2007.10.020. PubMed DOI
Saigusa T., Aono Y., Mizoguchi N., Iwakami T., Takada K., Oi Y., Ueda K., Koshikawa N., Cools A.R. Role of GABAB receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur. J. Pharmacol. 2008;581:276–282. doi: 10.1016/j.ejphar.2007.12.008. PubMed DOI
Cruz M.T., Herman M.A., Cote D.M., Ryabinin A.E., Roberto M. Ghrelin increases GABAergic transmission and interacts with ethanol actions in the rat central nucleus of the amygdala. Neuropsychopharmacology. 2013;38:364–375. doi: 10.1038/npp.2012.190. PubMed DOI PMC
Schutova B., Hruba L., Rokyta R., Slamberova R. Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev. Psychobiol. 2013;55:232–242. doi: 10.1002/dev.21016. PubMed DOI
Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 6th ed. Academic Press/Elsevier; Amsterdam, The Netherlands: 2006.
Skibicka K.P., Hansson C., Alvarez-Crespo M., Friberg P.A., Dickson S.L. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–137. doi: 10.1016/j.neuroscience.2011.02.016. PubMed DOI
Syslova K., Rambousek L., Kuzma M., Najmanova V., Bubenikova-Valesova V., Slamberova R., Kacer P. Monitoring of dopamine and its metabolites in brain microdialysates: Method combining freeze-drying with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2011;1218:3382–3391. doi: 10.1016/j.chroma.2011.02.006. PubMed DOI
The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions