Dibasic Derivatives of Phenylcarbamic Acid against Mycobacterial Strains: Old Drugs and New Tricks?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30274224
PubMed Central
PMC6222509
DOI
10.3390/molecules23102493
PII: molecules23102493
Knihovny.cz E-zdroje
- Klíčová slova
- Mycobacterium spp., dibasic phenylcarbamates, electronic properties, lipophilicity, surface tension,
- MeSH
- antituberkulotika chemická syntéza farmakologie MeSH
- azepiny chemická syntéza farmakologie MeSH
- ciprofloxacin chemie terapeutické užití MeSH
- ethambutol chemie terapeutické užití MeSH
- fenylkarbamáty chemická syntéza farmakologie MeSH
- isoniazid chemie terapeutické užití MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium avium účinky léků MeSH
- Mycobacterium kansasii účinky léků MeSH
- Mycobacterium smegmatis účinky léků MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- Mycobacterium účinky léků MeSH
- ofloxacin chemie terapeutické užití MeSH
- oxaláty chemie farmakologie MeSH
- počítačová simulace MeSH
- pyrrolidiny chemická syntéza farmakologie MeSH
- racionální návrh léčiv MeSH
- rozpustnost MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antituberkulotika MeSH
- azepiny MeSH
- ciprofloxacin MeSH
- ethambutol MeSH
- fenylkarbamáty MeSH
- isoniazid MeSH
- ofloxacin MeSH
- oxaláty MeSH
- pyrrolidiny MeSH
In order to provide a more detailed view on the structure⁻antimycobacterial activity relationship (SAR) of phenylcarbamic acid derivatives containing two centers of protonation, 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium oxalates (1a⁻d)/dichlorides (1e⁻h) as well as 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(di-propylammonio)propyl]azepanium oxalates (1i⁻l)/dichlorides (1m⁻p; alkoxy = butoxy to heptyloxy) were physicochemically characterized by estimation of their surface tension (γ; Traube's stalagmometric method), electronic features (log ε; UV/Vis spectrophotometry) and lipophilic properties (log kw; isocratic RP-HPLC) as well. The experimental log kw dataset was studied together with computational logarithms of partition coefficients (log P) generated by various methods based mainly on atomic or combined atomic and fragmental principles. Similarities and differences between the experimental and in silico lipophilicity descriptors were analyzed by unscaled principal component analysis (PCA). The in vitro activity of compounds 1a⁻p was inspected against Mycobacterium tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794, respectively), M. tuberculosis H37Ra ATCC 25177, M. kansasii CNCTC My 235/80 (identical with ATCC 12478), the M. kansasii 6509/96 clinical isolate, M. kansasii DSM 44162, M. avium CNCTC My 330/80 (identical with ATCC 25291), M. smegmatis ATCC 700084 and M. marinum CAMP 5644, respectively. In vitro susceptibility of the mycobacteria to reference drugs isoniazid, ethambutol, ofloxacin or ciprofloxacin was tested as well. A very unique aspect of the research was that many compounds from the set 1a⁻p were highly efficient almost against all tested mycobacteria. The most promising derivatives showed MIC values varied from 1.9 μM to 8 μM, which were lower compared to those of used standards, especially if concerning ability to fight M. tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 or M. avium CNCTC My 330/80. Current in vitro biological assays and systematic SAR studies based on PCA approach as well as fitting procedures, which were supported by relevant statistical descriptors, proved that the compounds 1a⁻p represented a very promising molecular framework for development of 'non-traditional' but effective antimycobacterial agents.
Zobrazit více v PubMed
Squeglia F., Romano M., Ruggiero A., Berisio R. Molecular players in tuberculosis drug development: Another break in the cell wall. Curr. Med. Chem. 2017;24:3954–3969. doi: 10.2174/0929867324666170208150016. PubMed DOI
Da Silva P.B., Campos D.L., Ribeiro C.M., da Silva I.C., Pavan F.R. New antimycobacterial agents in the pre-clinical phase or beyond: Recent advances in patent literature (2001–2016) Expert Opin. Ther. Pat. 2017;27:269–282. doi: 10.1080/13543776.2017.1253681. PubMed DOI
Wu M.L., Aziz D.B., Dartois V., Dick T. NTM Drug discovery: Status, gaps and the way forward. Drug Discov. Today. 2018;23:1502–1519. doi: 10.1016/j.drudis.2018.04.001. PubMed DOI PMC
Deshpande D., Srivastava S., Chapagain M.L., Lee P.S., Cirrincione K.N., Pasipanodya J.G., Gumbo T. The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J. Antimicrob. Chemother. 2017;72(Suppl. 2):i36–i42. doi: 10.1093/jac/dkx306. PubMed DOI
Amaral L., Viveiros M., Kristiansen J.E. ‘Non-Antibiotics’: Alternative therapy for the management of MDRTB and MRSA in economically disadvantaged countries. Curr. Drug Targets. 2006;7:887–891. doi: 10.2174/138945006777709539. PubMed DOI
Amaral L., Viveiros M. Thioridazine: A non-antibiotic drug highly effective, in combination with first line anti-tuberculosis drugs, against any form of antibiotic resistance of Mycobacterium tuberculosis due to its multi-mechanisms of action. Antibiotics. 2017;6:3. doi: 10.3390/antibiotics6010003. PubMed DOI PMC
Schmidt R.M., Rosenkranz H.S. Antimicrobial activity of local anesthetics: Lidocaine and procaine. J. Infect. Dis. 1970;121:597–607. doi: 10.1093/infdis/121.6.597. PubMed DOI
Fujii H., Nakajima H., Hirose T., Mochizuki T., Fukaura A., Ota S., Sugihara S., Tazawa H., Takahashi T. Growth inhibition of mycobacteria by lidocaine in fiberoptic bronchoscopic aspirates. JJSRE. 1993;15:108–115. doi: 10.18907/jjsre.15.2_108. DOI
Goldberg L. Pharmacological properties of xylocaine. Sven. Tandl. Tidskr. 1947;40:819–830.
Gordh T. Xylocain—A new local analgesic. Anesthesia. 1949;4:4–9. doi: 10.1111/j.1365-2044.1949.tb05802.x. PubMed DOI
Miescher K. Studies of local anesthetics. Helv. Chim. Acta. 1932;15:163–190. doi: 10.1002/hlca.19320150116. DOI
Agarwal N., Kalra V.K. Studies on the mechanism of action of local anesthetics on proton translocating ATPase from Mycobacterium phlei. Biochim. Biophys. Acta. 1984;764:316–323. doi: 10.1016/0005-2728(84)90102-6. PubMed DOI
Nakayama Y. The electrophoretical analysis of esterase and catalase and its use in taxonomical studies of mycobacteria. Jpn. J. Microbiol. 1967;11:95–101. doi: 10.1111/j.1348-0421.1967.tb00325.x. DOI
Prigozhin D.M., Mavrici D., Huizar J.P., Vansell H.J., Alber T. Structural and biochemical analyses of Mycobacterium tuberculosis N-acetylmuramyl-l-alanine amidase Rv3717 point to a role in peptidoglycan fragment recycling. J. Biol. Chem. 2013;288:31549–31555. doi: 10.1074/jbc.M113.510792. PubMed DOI PMC
Sultana R., Vemula M.H., Banerjee S., Guruprasad L. The PE16 (Rv1430) of Mycobacterium tuberculosis is an esterase belonging to serine hydrolase superfamily of proteins. PLoS ONE. 2013;8:e55320. doi: 10.1371/journal.pone.0055320. PubMed DOI PMC
Vacondio F., Silva C., Mor M., Testa B. Qualitative structure–metabolism relationships in the hydrolysis of carbamates. Drug Metab. Rev. 2010;42:551–589. doi: 10.3109/03602531003745960. PubMed DOI
Moraczewski A.L., Banaszynski L.A., From A.M., White C.E., Smith B.D. Using hydrogen bonding to control carbamate C−N rotamer equilibria. J. Org. Chem. 1998;63:7258–7262. doi: 10.1021/jo980644d. PubMed DOI
Combrink K.D., Denton D.A., Harran S., Ma Z., Chapo K., Yan D., Bonventre E., Roche E.D., Doyle T.B., Robertson G.T., et al. New C25 carbamate rifamycin derivatives are resistant to inactivation by ADP-ribosyl transferases. Bioorg. Med. Chem. Lett. 2007;17:522–526. doi: 10.1016/j.bmcl.2006.10.016. PubMed DOI
Velikorodov A.V., Urlyapova N.G., Daudova A.D. Synthesis and antimycobacterial activity of carbamate derivatives of 1,2-oxazine. Pharm. Chem. J. 2006;40:380–382. doi: 10.1007/s11094-006-0132-5. DOI
Férriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI
Csöllei J., Búčiová Ľ., Čižmárik J., Kopáčová L. Studies of local anaesthetics CXII. Preparation and activity of dibasic alkylesters of 2-, and 3-alkoxy-substituted phenylcarbamic acids. Českoslov. Farm. 1993;42:127–129. (In Slovak) PubMed
Pavelčík F., Remko M., Čižmárik J., Majer J. Crystal and molecular structure of heptacain hydrochloride. Collect. Czechoslov. Chem. Commun. 1986;51:264–270. doi: 10.1135/cccc19860264. DOI
Waisser K., Doležal R., Palát K., Jr., Čizmárik J., Kaustová J. QSAR Study of antimycobacterial activity of quaternary ammonium salts of piperidinylethyl esters of alkoxysubstituted phenylcarbamic acids. Folia Microbiol. 2006;51:21–24. doi: 10.1007/BF02931444. PubMed DOI
Blaser A., Palmer B.D., Sutherland H.S., Kmentova I., Franzblau S.G., Wan B., Wang Y., Ma Z., Thompson A.M., Denny W.A. Structure−activity relationships for amide-, carbamate-, and urea-linked analogues of the tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824) J. Med. Chem. 2012;55:312–326. doi: 10.1021/jm2012276. PubMed DOI
Gonec T., Pospisilova S., Holanova L., Stranik J., Cernikova A., Pudelkova V., Kos J., Oravec M., Kollar P., Cizek A., et al. Synthesis and antimicrobial evaluation of 1-[(2-substituted phenyl)carbamoyl]naphthalen-2-yl carbamates. Molecules. 2016;21:1189. doi: 10.3390/molecules21091189. PubMed DOI PMC
Malík I., Sedlárová E., Csöllei J., Andriamainty F., Čižmárik J., Kečkéšová S. The physicochemical properties of dibasic alkyl esters of 2- and 3-alkyloxy substituted phenylcarbamic acid. Acta Fac. Pharm. Univ. Comen. 2007;54:136–145.
Čižmárik J., Borovanský A., Švec P. Study of local anesthetics LII. Piperidinoethyl esters of alkoxyphenylcarbamic acids. Acta Fac. Pharm. 1976;29:53–79.
Heywood D.L., Phillips B. The reaction of epichlorohydrin with secondary amines. J. Am. Chem. Soc. 1958;80:1257–1259. doi: 10.1021/ja01538a057. DOI
Schleppnik A.A., Gutsche C.D. Synthesis of polysubstituted triptych-boroxazolidines. J. Org. Chem. 1962;27:3684–3686. doi: 10.1021/jo01057a507. DOI
Dilmohamud B.A., Seeneevassen J., Rughooputh S.D.D.V., Ramasami P. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer. Eur. J. Phys. 2005;26:1079–1084. doi: 10.1088/0143-0807/26/6/015. DOI
Vazquez G., Alvarez E., Navaza J.M. Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Eng. Data. 1995;40:611–614. doi: 10.1021/je00019a016. DOI
Stopková L., Gališinová J., Šuchtová Z., Čižmárik J., Andriamainty F. Determination of critical micellar concentration of homologous 2-alkoxyphenylcarbamoyloxyethylmorpholinium chlorides. Molecules. 2018;23:1064. doi: 10.3390/molecules23051064. PubMed DOI PMC
Čižmárik J., Borovanský A., Švec P. Study of local anesthetics. LVII. Perhydroazepinylethyl esters of alkoxyphenylcarbamic acids. Česk. Farm. 1976;25:118–121. (In Slovak) PubMed
Blešová M., Čižmárik J., Bachratá M., Bezáková Ž., Borovanský A. Chromatographic parameters, pKa, and surface activity of a series of hydrochlorides of perhydroazepinylethyl esters of alkoxyphenylcarbamic acids and their relation to anaesthetic activity. Collect. Czechoslov. Chem. Commun. 1985;50:1133–1140. doi: 10.1135/cccc19851133. DOI
Yadav L.D.S. Ultraviolet and Visible Spectroscopy. In: Yadav L.D.S., editor. Organic Spectroscopy. Springer; Amsterdam, The Netherlands: 2005. pp. 7–51. DOI
Čižmárik J., Borovanský A. Synthesis, u.v. and i.r. spectra of 2-piperidnoethyl esters of alkyloxyphenylcarbamic acids. Chem. Zvesti. 1975;29:119–123.
Rutkowska E., Pajak K., Jóźwiak K. Lipophilicity–methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. 2013;70:3–18. PubMed
Waisser K., Doležal R., Čižmárik J. Graphic demonstration of the structure–antimycobacterial activity relationships in the series of ester phenylcarbamic acid with piperidine or pyrrolidine moiety. Folia Pharm. Univ. Carol. 2008;37:65–76.
Van de Waterbeemd H., Kansy M., Wagner B., Fischer H. Lipophilicity Measurement by Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) In: Pliška V., Testa B., van de Waterbeemd H., editors. Lipophilicity in Drug Action and Toxicology. Methods and Principles in Medicinal Chemistry. VCh Verlag; Weinheim, Germany: 1996. pp. 73–88.
Valkó K., Slégel P. New chromatographic hydrophobicity index (ϕ0) based on the slope and the intercept of the log k′ versus organic phase concentration plot. J. Chromatogr. A. 1993;631:49–61. doi: 10.1016/0021-9673(93)80506-4. DOI
Du Ch.M., Valko K., Bevan Ch., Reynolds D., Abraham M.H. Rapid method for estimating octanol–water partition coefficient (log Poct) from isocratic RP-HPLC and a hydrogen bond acidity term (A) J. Liq. Chrom. Rel. Technol. 2001;24:635–649. doi: 10.1081/JLC-100103400. DOI
El Tayar N., van de Waterbeemd H., Testa B. Lipophilicity measurements of protonated basic compounds by reversed-phase high-performance liquid chromatography: I. Relationship between capacity factors and the methanol concentration in methanol–water eluents. J. Chromatogr. A. 1985;320:293–304. doi: 10.1016/S0021-9673(01)90507-2. DOI
El Tayar N., van de Waterbeemd H., Testa B. Lipophilicity measurements of protonated basic compounds by reversed-phase high-performance liquid chromatography: II. Procedure for the determination of a lipophilic index measured by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1985;320:305–312. doi: 10.1016/S0021-9673(01)90508-4. DOI
Paschke A., Manz M., Schüürmann G. Application of different RP-HPLC methods for the determination of the octanol/water partition coefficient of selected tetrachlorobenzyltoluenes. Chemosphere. 2001;45:721–728. doi: 10.1016/S0045-6535(01)00068-6. PubMed DOI
Montanari M.L.C., Montanari C.A., Piló-Veloso D., Cass Q.B. Estimation of the RP-HPLC lipophilicity parameters log k′, and log kw, a comparison with the hydrophobicity index ϕ0. J. Liq. Chromatogr. Relat. Technol. 1997;20:1703–1715. doi: 10.1080/10826079708006327. DOI
Flieger J., Tatarczak-Michalewska M., Wujec M., Pitucha M., Świeboda R. RP-HPLC Analysis and in vitro identification of antimycobacterial activity of novel thiosemicarbazides and 1,2,4-triazole derivatives. J. Pharm. Biomed. Anal. 2015;107:501–511. doi: 10.1016/j.jpba.2015.01.032. PubMed DOI
Goněc T., Malík I., Csöllei J., Jampílek J., Stolaříková J., Solovič I., Mikuš P., Keltošová S., Kollár P., O’Mahony J., et al. Synthesis and in vitro antimycobacterial activity of novel N-arylpiperazines containing an ethane-1,2-diyl connecting chain. Molecules. 2017;22:2100. doi: 10.3390/molecules22122100. PubMed DOI PMC
Carta A., Paglietti G., Rahbar Nikookar M.E., Sanna P., Sechi L., Zanetti S. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem. 2002;37:355–366. doi: 10.1016/S0223-5234(02)01346-6. PubMed DOI
Moreno E., Gabano E., Torres E., Platts J.A., Ravera M., Aldana I., Monge A., Pérez-Silanes S. Studies on log Po/w of quinoxaline di-N-oxides: A comparison of RP-HPLC experimental and predictive approaches. Molecules. 2011;16:7893–7908. doi: 10.3390/molecules16097893. PubMed DOI PMC
Snyder L.R., Poppe H. Mechanism of solute retention in liquid–solid chromatography and the role of the mobile phase in affecting separation: Competition versus ‘sorption’. J. Chromatogr. A. 1980;184:363–413. doi: 10.1016/S0021-9673(00)93872-X. DOI
Valkó K., Snyder L.R., Glajch J.L. Retention in reversed-phase liquid chromatography as a function of mobile-phase composition. J. Chromatogr. A. 1993;656:501–520. doi: 10.1016/0021-9673(93)80816-Q. DOI
Soczewiński E. Mechanistic molecular model of liquid–solid chromatography: Retention–eluent composition relationships. J. Chromatogr. A. 2002;965:109–116. doi: 10.1016/S0021-9673(01)01278-X. PubMed DOI
Chen N., Yhang Y., Lu P. Effects of molecular structure on the S index in the retention equation in reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1992;606:35–42. doi: 10.1016/0021-9673(92)85343-R. DOI
Ghose A.K., Crippen G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships. I. Partition coefficients as a measure of hydrophobicity. J. Comput. Chem. 1986;7:565–577. doi: 10.1002/jcc.540070419. PubMed DOI
Ghose A.K., Crippen G.M. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships. II. Modeling dispersive and hydrophobic interactions. J. Chem. Inform. Comput. Sci. 1987;27:21–35. doi: 10.1021/ci00053a005. PubMed DOI
Viswanadhan N.V., Ghose K.A., Reyankar R.G., Robins K.R. Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inform. Comput. Sci. 1989;29:163–172. doi: 10.1021/ci00063a006. DOI
Broto P., Moreau G., Vandycke C. Molecular structures: Perception, autocorrelation descriptor and SAR studies. System of atomic contributions for the calculation of the n-octanol/water partition coefficients. Eur. J. Med. Chem. 1984;19:71–78.
Leo A. The octanol–water partition coefficient of aromatic solutes: The effect of electronic interactions, alkyl chains, hydrogen bonds, and ortho-substitution. J. Chem. Soc. Perkin Trans. II. 1983;20:825–838. doi: 10.1039/P29830000825. DOI
Tetko I.V., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V.A., Radchenko E.V., Zefirov N.S., Makarenko A.S., et al. Virtual computational chemistry laboratory–design and description. J. Comput. Aided Mol. Des. 2005;19:453–463. doi: 10.1007/s10822-005-8694-y. PubMed DOI
Wang R., Gao Y., Lai L. Calculating partition coefficient by atom-additive method. Perspect. Drug Discov. Des. 2000;19:47–66. doi: 10.1023/A:1008763405023. DOI
Cheng T., Zhao Y., Li X., Lin F., Xu Y., Zhang X., Li Y., Wang R., Lai L. Computation of octanol–water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007;47:2140–2148. doi: 10.1021/ci700257y. PubMed DOI
Moriguchi I., Hirono S., Liu Q., Nakagome I., Matsushita Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. 1992;40:127–130. doi: 10.1248/cpb.40.127. DOI
Sander T., Freyss J., von Korff M., Reich J.R., Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model. 2009;49:232–246. doi: 10.1021/ci800305f. PubMed DOI
Molinspiration Cheminformatics, Slovenský Grob, Slovak Republic. [(accessed on 7 June 2018)]; Available online: http://www.molinspiration.com/cgi-bin/properties.
Viswanadhan V.N., Rami Reddy M., Bacquet R.J., Erion M.D. Assessment of methods used for predicting lipophilicity: Application to nucleosides and nucleoside bases. J. Comput. Chem. 1993;14:1019–1026. doi: 10.1002/jcc.540140903. DOI
Tetko I.V., Tanchuk V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 2002;42:1136–1145. doi: 10.1021/ci025515j. PubMed DOI
Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:E42717–E42729. doi: 10.1038/srep42717. PubMed DOI PMC
Abdi H., Williams L.J. Principal component analysis. WIREs Comp. Stat. 2010;2:433–459. doi: 10.1002/wics.101. DOI
Carpenter T.S., Kirshner D.A., Lau E.Y., Wong S.E., Nilmeier J.P., Lightstone F.C. A method to predict blood–brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys. J. 2014;107:630–641. doi: 10.1016/j.bpj.2014.06.024. PubMed DOI PMC
Norinder U., Haeberlein M. Computational approaches to the prediction of blood–brain distribution. Adv. Drug Deliv. Rev. 2002;54:291–313. doi: 10.1016/S0169-409X(02)00005-4. PubMed DOI
Van de Waterbeemd H., Camenisch G., Folkers G., Chretien J.R., Raevsky O.A. Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Targets. 1998;6:151–165. doi: 10.3109/10611869808997889. PubMed DOI
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benz-amides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Clinical and Laboratory Standards Institute (CLSI) Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard. 8th ed. CLSI; Wayne, NJ, USA: 2012. pp. 10–56. CLSI Document M11-A8. PubMed
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 24th ed. CLSI; Wayne, NJ, USA: 2014. pp. 106–211. Informational Supplement M100-S24.
Brown-Elliott B.A., Cohen S., Wallace R.J., Jr. Susceptibility Testing of Mycobacteria. In: Schwalbe R., Steele-Moore L., Goodwin A.C., editors. Antimicrobial Susceptibility Testing Protocols. CRC Press (Taylor and Francis Group); Boca Raton, FL, USA: 2007. pp. 243–274.
Waisser K., Dražková K., Čižmárik J., Kaustová J. Antimycobacterial activity of basic ethylesters of alkoxy-substituted phenylcarbamic acids. Folia Microbiol. 2003;48:45–50. doi: 10.1007/BF02931274. PubMed DOI
Jackson D.A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology. 1993;74:2204–2214. doi: 10.2307/1939574. DOI
Čižmárik J., Waisser K., Doležal R. QSAR Study of antimycobacterial activity of esters of phenylcarbamic acids. Acta Fac. Pharm. Univ. Comen. 2008;55:90–95.
Čižmárik J., Waisser K. Review of potential antituberculotics: Esters of substituted phenylcarbamic acids. Folia Pharm. Univ. Carol. 2008;37:91–94.
Grzegorzewicz A.E., de Sousa-d’Auria C., McNeil M.R., Huc-Claustre E., Jones V., Petit C., Angala S.K., Zemanová J., Wang Q., Belardinelli J.M., et al. Assembling of the Mycobacterium tuberculosis cell wall core. J. Biol. Chem. 2016;291:18867–18879. doi: 10.1074/jbc.M116.739227. PubMed DOI PMC
Kubinyi H. Quantitative structure–activity relationships. 7. The bilinear model, a new model for nonlinear dependence of biological activity on hydrophobic character. J. Med. Chem. 1977;20:625–629. doi: 10.1021/jm00215a002. PubMed DOI
David H.L., Rastogi N., Clavel-Sérès S., Clément F., Thorel M.-F. Structure of the cell envelope of Mycobacterium avium. Zent. Bakteriol. Mikrobiol. Hyg. A. 1987;264:49–66. doi: 10.1016/S0176-6724(87)80124-4. PubMed DOI
Hansch C., Clayton J.M. Lipophilic character and biological activity of drugs II. The parabolic case. J. Pharm. Sci. 1973;62:1–21. doi: 10.1002/jps.2600620102. PubMed DOI
Šula L. WHO Co-operative studies on a simple culture technique for the isolation of mycobacteria. 1. Preparation, lyophilization and reconstitution of a simple semi-synthetic concentrated liquid medium; culture technique; growth pattern of different mycobacteria. Bull. World Health Organ. 1963;29:589–606. PubMed PMC
De Voss J.J., Rutter K., Schroeder B.G., Su H., Zhu Y., Barry C.E., III The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. USA. 2000;97:1252–1257. doi: 10.1073/pnas.97.3.1252. PubMed DOI PMC
Schwartz B.D., De Voss J.J. Structure and absolute configuration of mycobactin J. Tetrahedron Lett. 2001;42:3653–3655. doi: 10.1016/S0040-4039(01)00531-7. DOI
Atlas R., Snyder J. Reagents, Stains, and Media: Bacteriology. In: Jorgensen J.H., Pfaller M.A., Carroll K.C., Funke G., Landry M.L., Richter S.S., Warnock D.W., editors. Manual of Clinical Microbiology (2-Volume Set) 11th ed. Volume 1. ASM Press; Washington, DC, USA: 2015. pp. 316–349. DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. PubMed PMC
Long J.E., DeJesus M., Ward D., Baker R.E., Ioerger T., Sassetti C.M. Identifying Essential Genes in Mycobacterium Tuberculosis by Global Phenotypic Profiling. In: Lu L.J., editor. Gene Essentiality. Methods and Protocols. Humana Press (Springer); New York, NY, USA: 2015. pp. 79–98. PubMed DOI
Ringnér M. What is principal component analysis? Nat. Biotechnol. 2008;26:303–304. doi: 10.1038/nbt0308-303. PubMed DOI
Heterocycles in Medicinal Chemistry
Investigation of Permeation of Theophylline through Skin Using Selected Piperazine-2,5-Diones