Early isolated V-lesion may not truly represent rejection of the kidney allograft
Language English Country Great Britain, England Media electronic-print
Document type Journal Article, Observational Study, Research Support, Non-U.S. Gov't
PubMed
30287520
PubMed Central
PMC6365629
DOI
10.1042/cs20180745
PII: CS20180745
Knihovny.cz E-resources
- Keywords
- intimal arteritis, isolated v-lesion, kidney transplantation, rejection, transcriptomics,
- MeSH
- Allografts MeSH
- Arteritis genetics MeSH
- Adult MeSH
- Gene Ontology MeSH
- Humans MeSH
- Cross-Sectional Studies MeSH
- Graft Rejection diagnosis genetics MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Gene Expression Profiling methods MeSH
- Case-Control Studies MeSH
- Transcriptome * MeSH
- Kidney Transplantation methods MeSH
- Tunica Intima metabolism pathology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Intimal arteritis is known to be a negative prognostic factor for kidney allograft survival. Isolated v-lesion (IV) is defined as intimal arteritis with minimal tubulointerstitial inflammation (TI). Although the Banff classification assesses IV as T cell-mediated rejection (TCMR), clinical, and prognostic significance of early IV (early IV, eIV) with negative C4d and donor-specific antibodies (DSA) remains unclear. To help resolve if such eIV truly represents acute rejection, a molecular study was performed. The transcriptome of eIV (n=6), T cell-mediated vascular rejection with rich TI (T cell-mediated vascular rejection, TCMRV, n=4) and non-rejection histologic findings (n=8) was compared using microarrays. A total of 310 genes were identified to be deregulated in TCMRV compared with eIV. Gene enrichment analysis categorized deregulated genes to be associated primarily with T-cells associated biological processes involved in an innate and adaptive immune and inflammatory response. Comparison of deregulated gene lists between the study groups and controls showed only a 1.7% gene overlap. Unsupervised hierarchical cluster analysis revealed clear distinction of eIV from TCMRV and showed similarity with a control group. Up-regulation of immune response genes in TCMRV was validated using RT-qPCR in a different set of eIV (n=12) and TCMRV (n=8) samples. The transcriptome of early IV (< 1 month) with negative C4d and DSA is associated with a weak immune signature compared with TCMRV and shows similarity with normal findings. Such eIV may feature non-rejection origin and reflect an injury distinct from an alloimmune response. The present study supports use of molecular methods when interpreting kidney allograft biopsy findings.
Department of Computer Science Czech Technical University Prague Czech Republic
Department of Immunogenetics Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Molecular Genetics Institute of Hematology and Blood Transfusion Prague Czech Republic
Department of Nephrology Institute for Clinical and Experimental Medicine Prague Czech Republic
Transplant Laboratory Institute for Clinical and Experimental Medicine Prague Czech Republic
See more in PubMed
Lefaucheur C., Loupy A., Vernerey D., Duong-Van-Huyen J.P., Suberbielle C., Anglicheau D.. et al. (2013) Antibody-mediated vascular rejection of kidney allografts: a population-based study. Lancet 381, 313–319 10.1016/S0140-6736(12)61265-3 PubMed DOI
Wu K., Budde K., Schmidt D., Neumayer H.H. and Rudolph B. (2015) The relationship of the severity and category of acute rejection with intimal arteritis defined in banff classification to clinical outcomes. Transplantation 99, e105–e114 10.1097/TP.0000000000000640 PubMed DOI
Mueller A., Schnuelle P., Waldherr R. and van der Woude F.J. (2000) Impact of the Banff ’97 classification for histological diagnosis of rejection on clinical outcome and renal function parameters after kidney transplantation. Transplantation 69, 1123–1127 10.1097/00007890-200003270-00017 PubMed DOI
Djamali A., Kaufman D.B., Ellis T.M., Zhong W., Matas A. and Samaniego M. (2014) Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am. J. Transplant. 14, 255–271 10.1111/ajt.12589 PubMed DOI PMC
Haas M., Sis B., Racusen L.C., Solez K., Glotz D., Colvin R.B.. et al. (2014) Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am. J. Transplant. 14, 272–283 10.1111/ajt.12590 PubMed DOI
Haas M., Loupy A., Lefaucheur C., Roufosse C., Glotz D., Seron D.. et al. (2018) The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 18, 293–307 10.1111/ajt.14625 PubMed DOI PMC
Mueller T.F., Einecke G., Reeve J., Sis B., Mengel M., Jhangri G.S.. et al. (2007) Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am. J. Transplant. 7, 2712–2722 10.1111/j.1600-6143.2007.02005.x PubMed DOI
Teo R.Z., Wong G., Russ G.R. and Lim W.H. (2016) Cell-mediated and humoral acute vascular rejection and graft loss: a registry study. Nephrology (Carlton) 21, 147–155 10.1111/nep.12577 PubMed DOI
Sis B., Bagnasco S.M., Cornell L.D., Randhawa P., Haas M., Lategan B.. et al. (2015) Isolated endarteritis and kidney transplant survival: a multicenter collaborative study. J. Am. Soc. Nephrol. 26, 1216–1227 10.1681/ASN.2014020157 PubMed DOI PMC
Salazar I.D., Merino López M., Chang J. and Halloran P.F. (2015) Reassessing the significance of intimal arteritis in kidney transplant biopsy specimens. J. Am. Soc. Nephrol. 26, 3190–3198 10.1681/ASN.2014111064 PubMed DOI PMC
Wu K.Y., Budde K., Schmidt D., Neumayer H.H. and Rudolph B. (2014) Acute cellular rejection with isolated v-lesions is not associated with more favorable outcomes than vascular rejection with more tubulointerstitial inflammations. Clin. Transplant. 28, 410–418 10.1111/ctr.12333 PubMed DOI
Rabant M., Boullenger F., Gnemmi V., Pelle G., Glowacki F., Hertig A.. et al. (2017) Isolated v-lesion in kidney transplant recipients: Characteristics, association with DSA, and histological follow-up. Am. J. Transplant. 18, 972–981 PubMed
Menon M.C., Keung K.L., Murphy B. and O’Connell P.J. (2016) The use of genomics and pathway analysis in our understanding and prediction of clinical renal transplant injury. Transplantation 100, 1405–1414 10.1097/TP.0000000000000943 PubMed DOI PMC
Reeve J., Einecke G., Mengel M., Sis B., Kayser N., Kaplan B.. et al. (2009) Diagnosing rejection in renal transplants: a comparison of molecular- and histopathology-based approaches. Am. J. Transplant. 9, 1802–1810 10.1111/j.1600-6143.2009.02694.x PubMed DOI
Reeve J., Chang J., Salazar I.D., Lopez M.M. and Halloran P.F. (2016) Using molecular phenotyping to guide improvements in the histologic diagnosis of t cell-mediated rejection. Am. J. Transplant. 16, 1183–1192 10.1111/ajt.13572 PubMed DOI
Salazar I.D., Merino Lopez M., Chang J. and Halloran P.F. (2015) Reassessing the Significance of intimal arteritis in kidney transplant biopsy specimens. J. Am. Soc. Nephrol. 26, 3190–3198 10.1681/ASN.2014111064 PubMed DOI PMC
Bolstad B.M., Irizarry R.A., Astrand M. and Speed T.P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 10.1093/bioinformatics/19.2.185 PubMed DOI
Schmid R., Baum P., Ittrich C., Fundel-Clemens K., Huber W., Brors B.. et al. (2010) Comparison of normalization methods for Illumina BeadChip HumanHT-12 v3. BMC Genomics 11, 349 10.1186/1471-2164-11-349 PubMed DOI PMC
Edgar R., Domrachev M. and Lash A.E. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 10.1093/nar/30.1.207 PubMed DOI PMC
Vapnik V.N.V. (1998) Statistical Learning Theory, Wiley, New York
Meyer D., Hornik K., Weingessel A., Leisch F., 2017, e1071: Misc Functions of the Department of Statistics, Probability Theory Group. R package version 1.6-8. 2017 [Available from: https://CRAN.R-project.org/package=e1071])
Guyon I.W.J., Barnhill S. and Vapnik V.N. (2002) Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 10.1023/A:1012487302797 DOI
Molinaro A.M., Simon R. and Pfeiffer R.M. (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21, 3301–3307 10.1093/bioinformatics/bti499 PubMed DOI
Zweig M.H. and Campbell G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 PubMed
Wohlfahrtova M., Brabcova I., Zelezny F., Balaz P., Janousek L., Honsova E.. et al. (2014) Tubular atrophy and low netrin-1 gene expression are associated with delayed kidney allograft function. Transplantation 97, 176–183 10.1097/TP.0b013e3182a95d04 PubMed DOI
Simon R., Radmacher M.D., Dobbin K. and McShane L.M. (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl. Cancer Inst. 95, 14–18 10.1093/jnci/95.1.14 PubMed DOI
Ambroise C. and McLachlan G.J. (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. U.S.A. 99, 6562–6566 10.1073/pnas.102102699 PubMed DOI PMC
Krawczuk J. and Lukaszuk T. (2016) The feature selection bias problem in relation to high-dimensional gene data. Artif. Intell. Med. 66, 63–71 10.1016/j.artmed.2015.11.001 PubMed DOI
Hruba P., Brabcova I., Gueler F., Krejcik Z., Stranecky V., Svobodova E.. et al. (2015) Molecular diagnostics identifies risks for graft dysfunction despite borderline histologic changes. Kidney Int. 88, 785–795 10.1038/ki.2015.211 PubMed DOI
Saint-Mezard P., Berthier C.C., Zhang H., Hertig A., Kaiser S., Schumacher M.. et al. (2009) Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection. Transpl. Int. 22, 293–302 10.1111/j.1432-2277.2008.00790.x PubMed DOI
Reeve J., Sellares J., Mengel M., Sis B., Skene A., Hidalgo L.. et al. (2013) Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am. J. Transplant. 13, 645–655 10.1111/ajt.12079 PubMed DOI
Bulbuloglu E., Yildiz H., Senoglu N., Coskuner I., Yuzbasioglu M.F., Kilinc M.. et al. (2011) Protective effects of zinc, pentoxifylline, and N-acetylcysteine in an animal model of laparoscopy-induced ischemia/reperfusion injury of the small intestine. J. Laparoendosc. Adv. Surg. Tech. A 21, 947–951 10.1089/lap.2011.0194 PubMed DOI
Hadj Abdallah N., Baulies A., Bouhlel A., Bejaoui M., Zaouali M.A., Ben Mimouna S.. et al. (2018) Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J. Cell. Physiol. 10.1002/jcp.26747 PubMed DOI
Halloran P.F., Pereira A.B., Chang J., Matas A., Picton M., De Freitas D.. et al. (2013) Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: the INTERCOM study. Am. J. Transplant. 13, 2352–2363 10.1111/ajt.12387 PubMed DOI
Jang H.R., Ko G.J., Wasowska B.A. and Rabb H. (2009) The interaction between ischemia-reperfusion and immune responses in the kidney. J. Mol. Med. (Berl.) 87, 859–864 10.1007/s00109-009-0491-y PubMed DOI
Ponticelli C. (2014) Ischaemia-reperfusion injury: a major protagonist in kidney transplantation. Nephrol. Dial. Transplant. 29, 1134–1140 10.1093/ndt/gft488 PubMed DOI
Wu K., Budde K., Lu H., Schmidt D., Liefeldt L., Glander P.. et al. (2014) The severity of acute cellular rejection defined by Banff classification is associated with kidney allograft outcomes. Transplantation 97, 1146–1154 10.1097/01.TP.0000441094.32217.05 PubMed DOI
Sis B., Bagnasco S.M., Cornell L.D., Randhawa P., Haas M., Lategan B.. et al. (2015) Isolated endarteritis and kidney transplant survival: a multicenter collaborative study. J. Am. Soc. Nephrol. 26, 1216–1227 10.1681/ASN.2014020157 PubMed DOI PMC
Sollinger H.W. (1995) Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation 60, 225–232 10.1097/00007890-199508000-00003 PubMed DOI
Novotny M., Hruba P., Vichova P., Maluskova J., Honsova E., Viklicky O.. et al. (2018) Isolated v-lesion represents a benign phenotype of vascular rejection of the kidney allograft- a retrospective study. Transpl. Int. 31, 1153–1163 10.1111/tri.13286 PubMed DOI
Halloran P.F., Famulski K.S. and Reeve J. (2016) Molecular assessment of disease states in kidney transplant biopsy samples. Nat. Rev. Nephrol. 12, 534–548 10.1038/nrneph.2016.85 PubMed DOI
Madill-Thomsen K.S., Wiggins R.C., Eskandary F., Bohmig G.A. and Halloran P.F. (2017) The effect of cortex/medulla proportions on molecular diagnoses in kidney transplant biopsies: rejection and injury can be assessed in medulla. Am. J. Transpl. 17, 2117–2128 10.1111/ajt.14233 PubMed DOI PMC
Reeve J., Halloran P.F. and Kaplan B. (2015) Common errors in the implementation and interpretation of microarray studies. Transplantation 99, 470–475 10.1097/TP.0000000000000691 PubMed DOI
Antibody-mediated rejection of renal allografts: diagnostic pitfalls and challenges