• This record comes from PubMed

Pseudotrypsin: A Little-Known Trypsin Proteoform

. 2018 Oct 14 ; 23 (10) : . [epub] 20181014

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
LO1204 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 30322187
PubMed Central PMC6222510
DOI 10.3390/molecules23102637
PII: molecules23102637
Knihovny.cz E-resources

Trypsin is the protease of choice for protein sample digestion in proteomics. The most typical active forms are the single-chain β-trypsin and the two-chain α-trypsin, which is produced by a limited autolysis of β-trypsin. An additional intra-chain split leads to pseudotrypsin (ψ-trypsin) with three chains interconnected by disulfide bonds, which can be isolated from the autolyzate by ion-exchange chromatography. Based on experimental data with artificial substrates, peptides, and protein standards, ψ-trypsin shows altered kinetic properties, thermodynamic stability and cleavage site preference (and partly also cleavage specificity) compared to the above-mentioned proteoforms. In our laboratory, we have analyzed the performance of bovine ψ-trypsin in the digestion of protein samples with a different complexity. It cleaves predominantly at the characteristic trypsin cleavage sites. However, in a comparison with common tryptic digestion, non-specific cleavages occur more frequently (mostly after the aromatic residues of Tyr and Phe) and more missed cleavages are generated. Because of the preferential cleavages after the basic residues and more developed side specificity, which is not expected to occur for the major trypsin forms (but may appear anyway because of their autolysis), ψ-trypsin produces valuable information, which is complementary in part to data based on a strictly specific trypsin digestion and thus can be unnoticed following common proteomics protocols.

See more in PubMed

Burkhart J.M., Schumbrutzki C., Wortelkamp S., Sickman A., Zahedi R.P. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J. Proteom. 2012;75:1454–1462. doi: 10.1016/j.jprot.2011.11.016. PubMed DOI

Vandermarliere E., Mueller M., Martens L. Getting intimate with trypsin. The leading protease in proteomics. Mass Spectrom. Rev. 2013;32:453–465. doi: 10.1002/mas.21376. PubMed DOI

Olsen J.V., Ong S.E., Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteom. 2004;3:608–614. doi: 10.1074/mcp.T400003-MCP200. PubMed DOI

Keil B. Trypsin. Enzymes. 1971;3:249–275. doi: 10.1016/S1874-6047(08)60399-6. DOI

Rodriguez J., Gupta N., Smith R.D., Pevzner P.A. Does trypsin cut before proline? J. Proteom. Res. 2008;7:300–305. doi: 10.1021/pr0705035. PubMed DOI

Picotti P., Aebersold R., Domon B. The implications of proteolytic background for shotgun proteomics. Mol. Cell. Proteom. 2007;6:1589–1598. doi: 10.1074/mcp.M700029-MCP200. PubMed DOI

Schaefer H., Chamrad D.C., Marcus K., Reidegeld K.A., Blüggel M., Meyer H.E. Tryptic transpeptidation products observed in proteome analysis by liquid chromatography-tandem mass spectrometry. Proteomics. 2005;5:846–852. doi: 10.1002/pmic.200401203. PubMed DOI

Dyčka F., Franc V., Fryčák P., Raus M., Řehulka P., Lenobel R., Allmaier G., Marchetti-Deschmann M., Šebela M. Evaluation of pseudotrypsin cleavage specificity towards proteins by MALDI-TOF mass spectrometry. Protein Pept. Lett. 2015;22:1123–1132. doi: 10.2174/0929866522666151008151617. PubMed DOI

Thiede B., Lamer S., Mattow J., Siejak F., Dimmler C., Rudel T., Jungblut P.R. Analysis of missed cleavage sites, tryptophan oxidation and N-terminal pyroglutamylation after in-gel tryptic digestion. Rapid Commun. Mass Spectrom. 2000;14:496–502. doi: 10.1002/(SICI)1097-0231(20000331)14:6<496::AID-RCM899>3.0.CO;2-1. PubMed DOI

Lawless C., Hubbard S.J. Prediction of missed proteolytic cleavages for the selection of surrogate peptides for quantitative proteomics. OMICS. 2012;16:449–456. doi: 10.1089/omi.2011.0156. PubMed DOI PMC

Kühne W. Über das Trypsin (Enzym des Pankreas). Verhandlungen des Naturhistorisch-medizinischen Vereins zu Heidelberg. Volume 1. Carl Winter’s Universitätsbuchhandlung; Heidelberg, Germany: 1877. pp. 194–198. reprinted in FEBS Lett. 1976, 62, E8–E12, doi:10.1016/0014-5793(76)80848-4.

Kunitz M., Northrop J.H. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound. J. Gen. Physiol. 1936;19:991–1007. doi: 10.1085/jgp.19.6.991. PubMed DOI PMC

Walsh K.A., Neurath H. Trypsinogen and chymotrypsinogen as homologous proteins. Proc. Natl. Acad. Sci. USA. 1964;52:884–889. doi: 10.1073/pnas.52.4.884. PubMed DOI PMC

Mikeš O., Holeyšovský V., Tomášek V., Šorm F. Covalent structure of bovine trypsinogen. The position of remaining amides. Biochem. Biophys. Res. Commun. 1966;24:346–352. doi: 10.1016/0006-291X(66)90162-8. PubMed DOI

Puigserver A., Desnuelle P. Identification of an anionic trypsinogen in bovine pancreas. Biochim. Biophys. Acta. 1971;236:499–502. doi: 10.1016/0005-2795(71)90231-5. PubMed DOI

Smith R.L., Shaw E. Pseudotrypsin. A modified bovine trypsin produced by limited autodigestion. J. Biol. Chem. 1969;244:4704–4712. PubMed

Maroux S., Rovery M., Desnuelle P. An autolyzed and still active form of bovine trypsin. Biochim. Biophys. Acta. 1967;140:377–380. doi: 10.1016/0005-2795(67)90482-5. PubMed DOI

Maroux S., Desnuelle P. On some autolyzed derivatives of bovine trypsin. Biochim. Biophys. Acta. 1969;181:59–72. doi: 10.1016/0005-2795(69)90227-X. PubMed DOI

Kumazaki T., Ishi S. Characterization of active derivatives produced by acetamidination and selective autolysis of bovine trypsin. J. Biochem. 1979;85:581–590. doi: 10.1093/oxfordjournals.jbchem.a132367. PubMed DOI

Lacerda C.D., Teixeira A.E., de Oliveira J.S., Silva S.F., Vasconcelos A.V.B., Gouveia D.G., da Silva A.R., Santoro M.M., dos Mares-Guia M.L., Santos A.M.C. Gamma trypsin: Purification and physicochemical characterization of a novel bovine trypsin isoform. Int. J. Biol. Macromol. 2014;70:179–186. doi: 10.1016/j.ijbiomac.2014.06.050. PubMed DOI

Walsh K.A., Wilcox P.E. Serine proteases. Methods Enzymol. 1970;19:31–41. doi: 10.1016/0076-6879(70)19005-7. DOI

Smith L.M., Kelleher N.L. The Consortium for Top Down Proteomics. Proteoform: A single term describing protein complexity. Nat. Methods. 2013;10:186–187. doi: 10.1038/nmeth.2369. PubMed DOI PMC

Schroeder D.D., Shaw E. Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J. Biol. Chem. 1968;243:2943–2949. PubMed

Keil-Dlouhá V.V., Zylber N., Imhoff J.M., Tong N.T., Keil B. Proteolytic activity of pseudotrypsin. FEBS Lett. 1971;16:291–295. doi: 10.1016/0014-5793(71)80373-3. PubMed DOI

Santos A.M.C., Oliveira J.S.D., Bittar E.R., Silva A.L.D., Guia M.L.D.M., Bemquerer M.P., Santoro M.M. Improved purification process of β-and α-trypsin isoforms by ion-exchange chromatography. Braz. Arch. Biol. Technol. 2008;51:511–521. doi: 10.1590/S1516-89132008000400009. DOI

Foucault G., Kellershohn N., Seydoux F., Yon J., Parquet C., Arrio B. Comparative study of some conformational properties of α, β and ψ trypsins. Biochimie. 1974;56:1343–1350. doi: 10.1016/S0300-9084(75)80020-4. PubMed DOI

Foucault G., Seydoux F., Yon J. Comparative kinetic properties of α, β and ψ forms of trypsin. Eur. J. Biochem. 1974;47:295–302. doi: 10.1111/j.1432-1033.1974.tb03693.x. PubMed DOI

Vincent J.P., Lazdunski M. Trypsin-pancreatic trypsin Inhibitor association. Dynamics of the interaction and role of disulfide bridges. Biochemistry. 1972;11:2967–2977. doi: 10.1021/bi00766a007. PubMed DOI

Chowdhury S.K., Chait B.T. Analysis of mixtures of closely related forms of bovine trypsin by electrospray ionization mass spectrometry: Use of charge state distributions to resolve ions of the different forms. Biochem. Biophys. Res. Commun. 1990;173:927–931. doi: 10.1016/S0006-291X(05)80874-5. PubMed DOI

Ashton D.S., Ashcroft A.E., Beddell C.R., Cooper D.J., Green B.N., Oliver R.W.A. On the analysis of bovine trypsin by electrospray-mass spectrometry. Biochem. Biophys. Res. Commun. 1994;199:694–698. doi: 10.1006/bbrc.1994.1284. PubMed DOI

Cunningham L.W. Molecular-kinetic properties of crystalline diisopropyl phosphoryl trypsin. J. Biol. Chem. 1954;211:13–19. PubMed

Günther A.R., Santoro M.M., Rogana E. pH titration of native and unfolded β-trypsin: Evaluation of the ΔΔG0 titration and the carboxyl pK values. Braz. J. Med. Biol. Res. 1997;30:1281–1286. doi: 10.1590/S0100-879X1997001100003. PubMed DOI

Buck F.F., Vithayathil A.J., Bier M., Nord F.F. On the mechanism of enzyme action. LXXIII. Studies on trypsins from beef, sheep and pig pancreas. Arch. Biochem. Biophys. 1962;97:417–424. doi: 10.1016/0003-9861(62)90099-1. PubMed DOI

Travis J., Liener I.E. The crystallization and partial characterization of porcine trypsin. J. Biol. Chem. 1965;240:1962–1966. PubMed

Ianucci N.B., Albanesi G.J., Marani M.M., Fernández Lahore H.M., Cascone O., Camperi S.A. Isolation of trypsin from bovine pancreas using immobilized benzamidine and peptide CTPR ligands in expanded beds. Sep. Sci. Technol. 2007;40:3277–3287. doi: 10.1080/01496390500423631. DOI

Matthews B.W., Sigler P.B., Henderson R., Blow D.M. The three-dimensional structure of tosyl-α-chymotrypsin. Nature. 1967;214:652–656. doi: 10.1038/214652a0. PubMed DOI

Birktoft J.J., Blow D.M. Structure of crystalline α-chymotrypsin: V. The atomic structure of tosyl-α-chymotrypsin at 2 Å resolution. J. Mol. Biol. 1972;68:187–240. doi: 10.1016/0022-2836(72)90210-0. PubMed DOI

Bode W., Schwager P. The refined crystal structure of bovine β-trypsin at 1.8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J. Mol. Biol. 1975;98:693–717. doi: 10.1016/S0022-2836(75)80005-2. PubMed DOI

Bode W., Fehlhammer H., Huber R. Crystal structure of bovine trypsinogen at 1.8 Å resolution. I. Data collection, application of Patterson search techniques and preliminary structural interpretation. J. Mol. Biol. 1976;106:325–335. doi: 10.1016/0022-2836(76)90089-9. PubMed DOI

Fehlhammer H., Bode W., Huber R. Crystal structure of bovine trypsinogen at 1.8 Å resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. J. Mol. Biol. 1977;111:415–438. doi: 10.1016/S0022-2836(77)80062-4. PubMed DOI

Sandler B., Murakami M., Clardy J. Atomic structure of the trypsin-aeruginosin 98-B complex. J. Am. Chem. Soc. 1998;120:595–596. doi: 10.1021/ja972991v. DOI

Page M.J., Di Cera E. Combinatorial enzyme design probes allostery and cooperativity in the trypsin fold. J. Mol. Biol. 2010;399:306–319. doi: 10.1016/j.jmb.2010.04.024. PubMed DOI PMC

Inagami T., Sturtevant J.M. Nonspecific catalyses by α-chymotrypsin and trypsin. J. Biol. Chem. 1960;235:1019–1023. PubMed

Nakano M., Tanizawa K., Nozawa M., Kanaoka Y. Efficient tryptic hydrolysis of aryl esters with a cationic center in the leaving group. Further characterization of “inverse substrates”. Chem. Pharm. Bull. 1980;28:2212–2216. doi: 10.1248/cpb.28.2212. DOI

Seydoux F., Yon J. On the specificity of tryptic catalysis. Biochem. Biophys. Res. Commun. 1971;44:745–751. doi: 10.1016/S0006-291X(71)80146-8. PubMed DOI

Keil-Dlouhá V., Zylber N., Tong N.T., Keil B. Cleavage of glucagon by α- and β-trypsin. FEBS Lett. 1971;16:287–290. doi: 10.1016/0014-5793(71)80372-1. PubMed DOI

Ghalayini M.K., Dong Q., Richardson D.R., Assinder S.J. Proteolytic cleavage and truncation of NDRG1 in human prostate cancer cells, but not normal prostate epithelial cells. Biosci. Rep. 2013;33:e00042. doi: 10.1042/BSR20130042. PubMed DOI PMC

Kirkpatrick D.S., Gerber S.A., Gygi S.P. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods. 2005;35:265–273. doi: 10.1016/j.ymeth.2004.08.018. PubMed DOI

Nigam A., Subramanian M., Rajanna P.K. Non-specific digestion artifacts of bovine trypsin exemplified with surrogate peptides for endogenous protein quantitation. Chromatographia. 2018;81:57–64. doi: 10.1007/s10337-017-3424-x. DOI

Krause E., Wenschuh H., Jungblut P.R. The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal. Chem. 1999;71:4160–4165. doi: 10.1021/ac990298f. PubMed DOI

Blavet N., Uřinovská J., Jeřábková H., Chamrád I., Vrána H., Lenobel R., Beinhauer J., Šebela M., Doležel J., Petrovská B. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle. Nucleus. 2016;8:70–80. doi: 10.1080/19491034.2016.1255391. PubMed DOI PMC

Havliš J., Thomas H., Šebela M., Shevchenko A. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 2003;75:1300–1306. doi: 10.1021/ac026136s. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...