• This record comes from PubMed

How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1-WG4 group of the ILAE/AES Joint Translational Task Force

. 2018 Dec ; 3 (4) : 460-473. [epub] 20181102

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Grant support
R01 NS091170 NINDS NIH HHS - United States
U54 NS100064 NINDS NIH HHS - United States

In vitro brain tissue preparations allow the convenient and affordable study of brain networks and have allowed us to garner molecular, cellular, and electrophysiologic insights into brain function with a detail not achievable in vivo. Preparations from both rodent and human postsurgical tissue have been utilized to generate in vitro electrical activity similar to electrographic activity seen in patients with epilepsy. A great deal of knowledge about how brain networks generate various forms of epileptiform activity has been gained, but due to the multiple in vitro models and manipulations used, there is a need for a standardization across studies. Here, we describe epileptiform patterns generated using in vitro brain preparations, focusing on issues and best practices pertaining to recording, reporting, and interpretation of the electrophysiologic patterns observed. We also discuss criteria for defining in vitro seizure-like patterns (i.e., ictal) and interictal discharges. Unifying terminologies and definitions are proposed. We suggest a set of best practices for reporting in vitro studies to favor both efficient across-lab comparisons and translation to in vivo models and human studies.

See more in PubMed

Yamamoto C, McIlwain H. Potentials evoked in vitro in preparations from the mammalian brain. Nature 1966;210:1055–1056. PubMed

Schwartzkroin PA, Prince DA. Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 1978;147:117–130. PubMed

Schwartzkroin PA, Prince DA. Microphysiology of human cerebral cortex studied in vitro. Brain Res 1976;115:497–500. PubMed

Avoli M, Williamson A. Functional and pharmacological properties of human neocortical neurons maintained in vitro. Prog Neurobiol 1996;48:519–554. PubMed

McBain CJ, Boden P, Hill RG. Rat hippocampal slices ‘in vitro’ display spontaneous epileptiform activity following long‐term organotypic culture. J Neurosci Methods 1989;27:35–49. PubMed

Berdichevsky Y, Dzhala V, Mail M, et al. Interictal spikes, seizures and ictal cell death are not necessary for post‐traumatic epileptogenesis in vitro. Neurobiol Dis 2012;45:774–785. PubMed PMC

Agmon A, Connors BW. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 1991;41:365–379. PubMed

Walther H, Lambert JD, Jones RS, et al. Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 1986;69:156–161. PubMed

Kumar SS, Huguenard JR. Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. J Neurophysiol 2001;86:2973–2985. PubMed

Khalilov I, Esclapez M, Medina I, et al. A novel in vitro preparation: the intact hippocampal formation. Neuron 1997;19:743–749. PubMed

de Curtis M, Pare D, Llinas RR. The electrophysiology of the olfactory‐hippocampal circuit in the isolated and perfused adult mammalian brain in vitro. Hippocampus 1991;1:341–354. PubMed

Gahwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 1981;4:329–342. PubMed

Raimondo JV, Heinemann U, de Curtiz M, et al. Methodological standards for in vitro models of epilepsy and epileptic seizures: a TASK1‐WG4 report of the AES/ILAE Translational Task Force. Epilepsia 2017;58:40–52. PubMed PMC

Furshpan EJ, Potter DD. Seizure‐like activity and cellular damage in rat hippocampal neurons in cell culture. Neuron 1989;3:199–207. PubMed

Segal MM. Epileptiform activity in microcultures containing one excitatory hippocampal neuron. J Neurophysiol 1991;65:761–770. PubMed

Jenssen S, Gracely EJ, Sperling MR. How long do most seizures last? A systematic comparison of seizures recorded in the epilepsy monitoring unit. Epilepsia 2006;47:1499–1503. PubMed

Fisher RS. Redefining epilepsy. Curr Opin Neurol 2015;28:130–135. PubMed

de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol 2001;63:541–567. PubMed

Fisher RS, Scharfman HE, deCurtis M. How can we identify ictal and interictal abnormal activity? Adv Exp Med Biol 2014;813:3–23. PubMed PMC

de Curtis M, Avoli M. GABAergic networks jump‐start focal seizures. Epilepsia 2016;57:679–687. PubMed PMC

Avoli M, Barbarosie M, Lucke A, et al. Synchronous GABA‐mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci 1996;16:3912–3924. PubMed PMC

Uva L, Breschi GL, Gnatkovsky V, et al. Synchronous inhibitory potentials precede seizure‐like events in acute models of focal limbic seizures. J Neurosci 2015;35:3048–3055. PubMed PMC

Cohen I, Navarro V, Clemenceau S, et al. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 2002;298:1418–1421. PubMed

Cantu D, Walker K, Andresen L, et al. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex 2014;25:2306–2320. PubMed PMC

D'Ambrosio R, Fairbanks JP, Fender JS, et al. Post‐traumatic epilepsy following fluid percussion injury in the rat. Brain 2004;127:304–314. PubMed PMC

Prince DA, Tseng GF. Epileptogenesis in chronically injured cortex: in vitro studies. J Neurophysiol 1993;69:1276–1291. PubMed

Jacobs KM, Gutnick MJ, Prince DA. Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 1996;6:514–523. PubMed

Jefferys JG. Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome. J Neurophysiol 1989;62:458–468. PubMed

Paz JT, Bryant AS, Peng K, et al. A new mode of corticothalamic transmission revealed in the Gria4(‐/‐) model of absence epilepsy. Nat Neurosci 2011;14:1167–1173. PubMed PMC

Liautard C, Scalmani P, Carriero G, et al. Hippocampal hyperexcitability and specific epileptiform activity in a mouse model of Dravet syndrome. Epilepsia 2013;54:1251–1261. PubMed

Heinemann U, Gabriel S, Angamo EA, et al. Brain Slices from Human Resected Tissues In Pitkanen A, Buckmaster PS, Galanopoulou AS, Moshe SL. (Eds) Models of seizures and epilepsy. New York: Elsevier, 2017:285–299.

Tancredi V, Biagini G, D'Antuono M, et al. Spindle‐like thalamocortical synchronization in a rat brain slice preparation. J Neurophysiol 2000;84:1093–1097. PubMed

Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure‐onset patterns: effect of underlying pathology. Brain 2014;137:183–196. PubMed

Jirsa VK, Stacey WC, Quilichini PP, et al. On the nature of seizure dynamics. Brain 2014;137:2210–2230. PubMed PMC

Avoli M, de Curtis M, Gnatkovsky V, et al. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J Neurophysiol 2016;115:3229–3237. PubMed PMC

Bragdon AC, Kojima H, Wilson WA. Suppression of interictal bursting in hippocampus unleashes seizures in entorhinal cortex: a proepileptic effect of lowering [K+]o and raising [Ca2+]o. Brain Res 1992;590:128–135. PubMed

Igelstrom KM, Shirley CH, Heyward PM. Low‐magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 2011;106:2593–2605. PubMed

Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol 1987;57:869–888. PubMed

Shiri Z, Manseau F, Levesque M, et al. Activation of specific neuronal networks leads to different seizure onset types. Ann Neurol 2016;79:354–365. PubMed PMC

Boido D, Gnatkovsky V, Uva L, et al. Simultaneous enhancement of excitation and postburst inhibition at the end of focal seizures. Ann Neurol 2014;76:826–836. PubMed

de Curtis M, Gnatkovsky V. Reevaluating the mechanisms of focal ictogenesis: the role of low‐voltage fast activity. Epilepsia 2009;50:2514–2525. PubMed

Uva L, Saccucci S, Chikhladze M, et al. A novel focal seizure pattern generated in superficial layers of the olfactory cortex. J Neurosci 2017;37:3544–3554. PubMed PMC

Jefferys JGR, Jiruska P, de Curtis M, et al. Limbic Network Synchronization and Temporal Lobe Epilepsy In Noebels JL, Avoli M, Rogawski MA, et al. (Eds) Jasper's basic mechanisms of the epilepsies. Bethesda (MD): National Center for Biotechnology Information, 2012. PubMed

Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci 2007;30:309–316. PubMed

Buzsaki G, Horvath Z, Urioste R, et al. High‐frequency network oscillation in the hippocampus. Science 1992;256:1025–1027. PubMed

Engel J Jr, Bragin A, Staba R, et al. High‐frequency oscillations: what is normal and what is not? Epilepsia 2009;50:598–604. PubMed

Bragin A, Engel J Jr, Wilson CL, et al. High‐frequency oscillations in human brain. Hippocampus 1999;9:137–142. PubMed

Jiruska P, Csicsvari J, Powell AD, et al. High‐frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J Neurosci 2010;30:5690–5701. PubMed PMC

Foffani G, Uzcategui YG, Gal B, et al. Reduced spike‐timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron 2007;55:930–941. PubMed

Dzhala VI, Staley KJ. Mechanisms of fast ripples in the hippocampus. J Neurosci 2004;24:8896–8906. PubMed PMC

Bragin A, Mody I, Wilson CL, et al. Local generation of fast ripples in epileptic brain. J Neurosci 2002;22:2012–2021. PubMed PMC

Gliske SV, Stacey WC, Lim E, et al. Emergence of narrowband high frequency oscillations from asynchronous, uncoupled neural firing. Int J Neural Syst 2017;27:1650049. PubMed PMC

Khosravani H, Pinnegar CR, Mitchell JR, et al. Increased high‐frequency oscillations precede in vitro low‐Mg seizures. Epilepsia 2005;46:1188–1197. PubMed

Draguhn A, Traub RD, Schmitz D, et al. Electrical coupling underlies high‐frequency oscillations in the hippocampus in vitro. Nature 1998;394:189–192. PubMed

Fink CG, Gliske S, Catoni N, et al. Network mechanisms generating abnormal and normal hippocampal high‐frequency oscillations: a computational analysis. eNeuro 2015;2. PubMed PMC

Matsumoto A, Brinkmann BH, Matthew Stead S, et al. Pathological and physiological high‐frequency oscillations in focal human epilepsy. J Neurophysiol 2013;110:1958–1964. PubMed PMC

Frauscher B, von Ellenrieder N, Ferrari‐Marinho T, et al. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 2015;138:1629–1641. PubMed PMC

Kudlacek J, Chvojka J, Posusta A, et al. Lacosamide and levetiracetam have no effect on sharp‐wave ripple rate. Frontiers in Neurology 2017;8:687. PubMed PMC

Ikeda A, Terada K, Mikuni N, et al. Subdural recording of ictal DC shifts in neocortical seizures in humans. Epilepsia 1996;37:662–674. PubMed

Ikeda A, Taki W, Kunieda T, et al. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 1999;122(Pt 5):827–838. PubMed

Huguenard JR, Prince DA. Intrathalamic rhythmicity studied in vitro: nominal T‐current modulation causes robust antioscillatory effects. J Neurosci 1994;14:5485–5502. PubMed PMC

Huntsman MM, Porcello DM, Homanics GE, et al. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 1999;283:541–543. PubMed

Toth TI, Bessaih T, Leresche N, et al. The properties of reticular thalamic neuron GABA(A) IPSCs of absence epilepsy rats lead to enhanced network excitability. Eur J Neurosci 2007;26:1832–1844. PubMed

von Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 1993;261:361–364. PubMed

Sorokin JM, Davidson TJ, Frechette E, et al. Bidirectional control of generalized epilepsy networks via rapid real‐time switching of firing mode. Neuron 2017;93:194–210. PubMed PMC

Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low‐threshold calcium current in thalamic neurons. Ann Neurol 1989;25:582–593. PubMed

Clemente‐Perez A, Makinson SR, Higashikubo B, et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep 2017;19:2130–2142. PubMed PMC

Anderson WW, Lewis DV, Swartzwelder HS, et al. Magnesium‐free medium activates seizure‐like events in the rat hippocampal slice. Brain Res 1986;398:215–219. PubMed

Gutierrez R, Armand V, Schuchmann S, et al. Epileptiform activity induced by low Mg2+ in cultured rat hippocampal slices. Brain Res 1999;815:294–303. PubMed

Tancredi V, Hwa GG, Zona C, et al. Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features. Brain Res 1990;511:280–290. PubMed

McLaughlin SG, Szabo G, Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol 1971;58:667–687. PubMed PMC

Dreier JP, Zhang CL, Heinemann U. Phenytoin, phenobarbital, and midazolam fail to stop status epilepticus‐like activity induced by low magnesium in rat entorhinal slices, but can prevent its development. Acta Neurol Scand 1998;98:154–160. PubMed

Quilichini PP, Diabira D, Chiron C, et al. Persistent epileptiform activity induced by low Mg2+ in intact immature brain structures. Eur J Neurosci 2002;16:850–860. PubMed

Zhang CL, Dreier JP, Heinemann U. Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 1995;20:105–111. PubMed

Perreault P, Avoli M. 4‐aminopyridine‐induced epileptiform activity and a GABA‐mediated long‐lasting depolarization in the rat hippocampus. J Neurosci 1992;12:104–115. PubMed PMC

Bruckner C, Stenkamp K, Meierkord H, et al. Epileptiform discharges induced by combined application of bicuculline and 4‐aminopyridine are resistant to standard anticonvulsants in slices of rats. Neurosci Lett 1999;268:163–165. PubMed

Bruckner C, Heinemann U. Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4‐aminopyridine in combined entorhinal cortex‐hippocampal slices. Brain Res 2000;859:15–20. PubMed

Yaari Y, Konnerth A, Heinemann U. Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 1986;56:424–438. PubMed

Haas HL, Jefferys JG. Low‐calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 1984;354:185–201. PubMed PMC

Taylor CP, Dudek FE. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 1982;218:810–812. PubMed

Pumain R, Menini C, Heinemann U, et al. Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp Neurol 1985;89:250–258. PubMed

Feng Z, Durand DM. Low‐calcium epileptiform activity in the hippocampus in vivo. J Neurophysiol 2003;90:2253–2260. PubMed

Stasheff SF, Anderson WA, Clark S, et al. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science 1989;245:648–652. PubMed

Traynelis SF, Dingledine R. Potassium‐induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 1988;59:259–276. PubMed

Yamamoto C, Kawai N. Seizure discharges evoked in vitro in thin section from guinea pig hippocampus. Science 1967;155:341–342. PubMed

Macdonald RL, Barker JL. Pentylenetetrazol and penicillin are selective antagonists of GABA‐mediated post‐synaptic inhibition in cultured mammalian neurones. Nature 1977;267:720–721. PubMed

Hablitz JJ. Picrotoxin‐induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J Neurophysiol 1984;51:1011–1027. PubMed

Westbrook GL, Lothman EW. Cellular and synaptic basis of kainic acid‐induced hippocampal epileptiform activity. Brain Res 1983;273:97–109. PubMed

Uva L, Librizzi L, Marchi N, et al. Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea‐pig brain requires enhancement of blood‐brain barrier permeability. Neuroscience 2008;151:303–312. PubMed PMC

Nagao T, Alonso A, Avoli M. Epileptiform activity induced by pilocarpine in the rat hippocampal‐entorhinal slice preparation. Neuroscience 1996;72:399–408. PubMed

Schwartzkroin PA, Prince DA. Effects of TEA on hippocampal neurons. Brain Res 1980;185:169–181. PubMed

Marchi N, Oby E, Batra A, et al. In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 2007;48:1934–1946. PubMed PMC

Rutecki PA, Yang Y. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine. J Neurophysiol 1998;79:3019–3029. PubMed

Fisher RS, Alger BE. Electrophysiological mechanisms of kainic acid‐induced epileptiform activity in the rat hippocampal slice. J Neurosci 1984;4:1312–1323. PubMed PMC

Noe FM, Bellistri E, Colciaghi F, et al. Kainic acid‐induced albumin leak across the blood‐brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016;57:967–976. PubMed

Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991;37:173–182. PubMed

Berdichevsky Y, Saponjian Y, Park KI, et al. Staged anticonvulsant screening for chronic epilepsy. Ann Clin Transl Neurol 2016;3:908–923. PubMed PMC

Liu J, Saponjian Y, Mahoney MM, et al. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PLoS ONE 2017;12:e0172677. PubMed PMC

Royeck M, Kelly T, Opitz T, et al. Downregulation of spermine augments dendritic persistent sodium currents and synaptic integration after status epilepticus. J Neurosci 2015;35:15240–15253. PubMed PMC

Kobayashi M, Wen X, Buckmaster PS. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 2003;23:8471–8479. PubMed PMC

Tsakiridou E, Bertollini L, de Curtis M, et al. Selective increase in T‐type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995;15:3110–3117. PubMed PMC

Bernard C, Anderson A, Becker A, et al. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 2004;305:532–535. PubMed

Lillis KP, Dulla C, Maheshwari A, et al. WONOEP appraisal: molecular and cellular imaging in epilepsy. Epilepsia 2015;56:505–513. PubMed PMC

Kibler AB, Durand DM. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro. Epilepsia 2011;52:1590–1600. PubMed PMC

Ang CW, Carlson GC, Coulter DA. Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J Neurosci 2006;26:11850–11856. PubMed PMC

Yang HH, St‐Pierre F. Genetically encoded voltage indicators: opportunities and challenges. J Neurosci 2016;36:9977–9989. PubMed PMC

Benar CG, Chauviere L, Bartolomei F, et al. Pitfalls of high‐pass filtering for detecting epileptic oscillations: a technical note on “false” ripples. Clin Neurophysiol 2010;121:301–310. PubMed

Roehri N, Lina JM, Mosher JC, et al. Time‐frequency strategies for increasing high‐frequency oscillation detectability in intracerebral EEG. IEEE Trans Biomed Eng 2016;63:2595–2606. PubMed PMC

Yael D, Bar‐Gad I. Filter based phase distortions in extracellular spikes. PLoS ONE 2017;12:e0174790. PubMed PMC

Griffin A, Krasniak C, Baraban SC. Advancing epilepsy treatment through personalized genetic zebrafish models. Prog Brain Res 2016;226:195–207. PubMed

Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci 2015;18:339–343. PubMed

Paz JT, Huguenard JR. Optogenetics and epilepsy: past, present and future. Epilepsy Curr 2015;15:34–38. PubMed PMC

Krook‐Magnuson E, Soltesz I. Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nat Neurosci 2015;18:331–338. PubMed PMC

Galanopoulou AS, Kokaia M, Loeb JA, et al. Epilepsy therapy development: technical and methodologic issues in studies with animal models. Epilepsia 2013;54(Suppl 4):13–23. PubMed PMC

Uva L, Trombin F, Carriero G, et al. Seizure‐like discharges induced by 4‐aminopyridine in the olfactory system of the in vitro isolated guinea pig brain. Epilepsia 2013;54:605–615. PubMed PMC

Jensen MS, Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 1997;77:1224–233. PubMed

Stasheff SF, Bragdon AC, Wilson WA. Induction of epileptiform activity in hippocampal slices by trains of electrical stimuli. Brain Res. 1985;344:296–302. PubMed

Dyhrfjeld‐Johnsen J, Berdichevsky Y, Swiercz W, et al. Interictal spikes precedeictal discharges in an organotypic hippocampal slice culture model of epileptogenesis. J Clin Neurophysiol 2010;27:418–424. PubMed PMC

Avoli M, Drapeau C, Perreault P, et al. Epileptiform activity induced by low chloride medium in the CA1 subfield of the hippocampal slice. J Neurophysiol. 1990;64:1747–1757. PubMed

Chamberlin NL, Dingledine R. GABAergic inhibition and the induction of spontaneous epileptiform activity by low chloride and high potassium in the hippocampal slice. Brain Res 1988;445:12–18. PubMed

Yamamoto C, Kawai N. Generation of the seizure discharge in thin sections from the guinea pig brain in chloride‐free medium in vitro. Jpn J Physiol 1968;18:620–631. PubMed

Yamamoto C, Kawai N. Origin of the seizure discharge evoked in vitro in thin sections from the guinea pig dentate gyrus. Jpn J Physiol 1969;19:119–129. PubMed

Piredda S, Yonekawa W, Whittingham TS, et al. Effects of antiepileptic drugs on pentylenetetrazole‐induced epileptiform activity in the in vitro hippocampus. Epilepsia 1986;27:341–346. PubMed

Schwartzkroin PA, Prince DA. Penicillin‐induced epileptiform activity in the hippocampal in vitro prepatation. Ann Neurol 1977;1:463–1469. PubMed

Sokal DM, Mason R, Parker TL. Multi‐neuronal recordings reveal a differential effect of thapsigargin on bicuculline‐ or gabazine‐induced epileptiform excitability in rat hippocampal neuronal networks. Neuropharmacology 2000;39:2408–2417. PubMed

Uva L, Librizzi L, Wendling F, et al. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal‐parahippocampal region of the isolated Guinea pig brain. Epilepsia 2005;46:1914–1925. PubMed

Gnatkovsky V, Librizzi L, Trombin F, et al. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 2008;64:674–686. PubMed

Khalilov I, Holmes GL, Ben‐Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 2003;6:1079–1085. PubMed

Noé FM, Bellistri E, Colciaghi F, et al. Kainic acid‐induced albumin leak across the blood‐brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016;57:967–976. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...