How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1-WG4 group of the ILAE/AES Joint Translational Task Force
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
Grant support
R01 NS091170
NINDS NIH HHS - United States
U54 NS100064
NINDS NIH HHS - United States
PubMed
30525115
PubMed Central
PMC6276782
DOI
10.1002/epi4.12277
PII: EPI412277
Knihovny.cz E-resources
- Keywords
- Ictal activity, In vitro models, Review,
- Publication type
- Journal Article MeSH
In vitro brain tissue preparations allow the convenient and affordable study of brain networks and have allowed us to garner molecular, cellular, and electrophysiologic insights into brain function with a detail not achievable in vivo. Preparations from both rodent and human postsurgical tissue have been utilized to generate in vitro electrical activity similar to electrographic activity seen in patients with epilepsy. A great deal of knowledge about how brain networks generate various forms of epileptiform activity has been gained, but due to the multiple in vitro models and manipulations used, there is a need for a standardization across studies. Here, we describe epileptiform patterns generated using in vitro brain preparations, focusing on issues and best practices pertaining to recording, reporting, and interpretation of the electrophysiologic patterns observed. We also discuss criteria for defining in vitro seizure-like patterns (i.e., ictal) and interictal discharges. Unifying terminologies and definitions are proposed. We suggest a set of best practices for reporting in vitro studies to favor both efficient across-lab comparisons and translation to in vivo models and human studies.
Aix Marseille Univ INSERM INS Inst Neurosci Syst Marseille France
Department of Neuroscience Tufts University School of Medicine Boston Massachusetts U S A
Epilepsy Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milano Italy
Flocel Inc and Case Western Reserve University Cleveland Ohio U S A
The Departments of Neurology and Pediatrics University of Virginia Charlottesville Virginia U S A
See more in PubMed
Yamamoto C, McIlwain H. Potentials evoked in vitro in preparations from the mammalian brain. Nature 1966;210:1055–1056. PubMed
Schwartzkroin PA, Prince DA. Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 1978;147:117–130. PubMed
Schwartzkroin PA, Prince DA. Microphysiology of human cerebral cortex studied in vitro. Brain Res 1976;115:497–500. PubMed
Avoli M, Williamson A. Functional and pharmacological properties of human neocortical neurons maintained in vitro. Prog Neurobiol 1996;48:519–554. PubMed
McBain CJ, Boden P, Hill RG. Rat hippocampal slices ‘in vitro’ display spontaneous epileptiform activity following long‐term organotypic culture. J Neurosci Methods 1989;27:35–49. PubMed
Berdichevsky Y, Dzhala V, Mail M, et al. Interictal spikes, seizures and ictal cell death are not necessary for post‐traumatic epileptogenesis in vitro. Neurobiol Dis 2012;45:774–785. PubMed PMC
Agmon A, Connors BW. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 1991;41:365–379. PubMed
Walther H, Lambert JD, Jones RS, et al. Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 1986;69:156–161. PubMed
Kumar SS, Huguenard JR. Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. J Neurophysiol 2001;86:2973–2985. PubMed
Khalilov I, Esclapez M, Medina I, et al. A novel in vitro preparation: the intact hippocampal formation. Neuron 1997;19:743–749. PubMed
de Curtis M, Pare D, Llinas RR. The electrophysiology of the olfactory‐hippocampal circuit in the isolated and perfused adult mammalian brain in vitro. Hippocampus 1991;1:341–354. PubMed
Gahwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 1981;4:329–342. PubMed
Raimondo JV, Heinemann U, de Curtiz M, et al. Methodological standards for in vitro models of epilepsy and epileptic seizures: a TASK1‐WG4 report of the AES/ILAE Translational Task Force. Epilepsia 2017;58:40–52. PubMed PMC
Furshpan EJ, Potter DD. Seizure‐like activity and cellular damage in rat hippocampal neurons in cell culture. Neuron 1989;3:199–207. PubMed
Segal MM. Epileptiform activity in microcultures containing one excitatory hippocampal neuron. J Neurophysiol 1991;65:761–770. PubMed
Jenssen S, Gracely EJ, Sperling MR. How long do most seizures last? A systematic comparison of seizures recorded in the epilepsy monitoring unit. Epilepsia 2006;47:1499–1503. PubMed
Fisher RS. Redefining epilepsy. Curr Opin Neurol 2015;28:130–135. PubMed
de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol 2001;63:541–567. PubMed
Fisher RS, Scharfman HE, deCurtis M. How can we identify ictal and interictal abnormal activity? Adv Exp Med Biol 2014;813:3–23. PubMed PMC
de Curtis M, Avoli M. GABAergic networks jump‐start focal seizures. Epilepsia 2016;57:679–687. PubMed PMC
Avoli M, Barbarosie M, Lucke A, et al. Synchronous GABA‐mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci 1996;16:3912–3924. PubMed PMC
Uva L, Breschi GL, Gnatkovsky V, et al. Synchronous inhibitory potentials precede seizure‐like events in acute models of focal limbic seizures. J Neurosci 2015;35:3048–3055. PubMed PMC
Cohen I, Navarro V, Clemenceau S, et al. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 2002;298:1418–1421. PubMed
Cantu D, Walker K, Andresen L, et al. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex 2014;25:2306–2320. PubMed PMC
D'Ambrosio R, Fairbanks JP, Fender JS, et al. Post‐traumatic epilepsy following fluid percussion injury in the rat. Brain 2004;127:304–314. PubMed PMC
Prince DA, Tseng GF. Epileptogenesis in chronically injured cortex: in vitro studies. J Neurophysiol 1993;69:1276–1291. PubMed
Jacobs KM, Gutnick MJ, Prince DA. Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 1996;6:514–523. PubMed
Jefferys JG. Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome. J Neurophysiol 1989;62:458–468. PubMed
Paz JT, Bryant AS, Peng K, et al. A new mode of corticothalamic transmission revealed in the Gria4(‐/‐) model of absence epilepsy. Nat Neurosci 2011;14:1167–1173. PubMed PMC
Liautard C, Scalmani P, Carriero G, et al. Hippocampal hyperexcitability and specific epileptiform activity in a mouse model of Dravet syndrome. Epilepsia 2013;54:1251–1261. PubMed
Heinemann U, Gabriel S, Angamo EA, et al. Brain Slices from Human Resected Tissues In Pitkanen A, Buckmaster PS, Galanopoulou AS, Moshe SL. (Eds) Models of seizures and epilepsy. New York: Elsevier, 2017:285–299.
Tancredi V, Biagini G, D'Antuono M, et al. Spindle‐like thalamocortical synchronization in a rat brain slice preparation. J Neurophysiol 2000;84:1093–1097. PubMed
Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure‐onset patterns: effect of underlying pathology. Brain 2014;137:183–196. PubMed
Jirsa VK, Stacey WC, Quilichini PP, et al. On the nature of seizure dynamics. Brain 2014;137:2210–2230. PubMed PMC
Avoli M, de Curtis M, Gnatkovsky V, et al. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J Neurophysiol 2016;115:3229–3237. PubMed PMC
Bragdon AC, Kojima H, Wilson WA. Suppression of interictal bursting in hippocampus unleashes seizures in entorhinal cortex: a proepileptic effect of lowering [K+]o and raising [Ca2+]o. Brain Res 1992;590:128–135. PubMed
Igelstrom KM, Shirley CH, Heyward PM. Low‐magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 2011;106:2593–2605. PubMed
Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol 1987;57:869–888. PubMed
Shiri Z, Manseau F, Levesque M, et al. Activation of specific neuronal networks leads to different seizure onset types. Ann Neurol 2016;79:354–365. PubMed PMC
Boido D, Gnatkovsky V, Uva L, et al. Simultaneous enhancement of excitation and postburst inhibition at the end of focal seizures. Ann Neurol 2014;76:826–836. PubMed
de Curtis M, Gnatkovsky V. Reevaluating the mechanisms of focal ictogenesis: the role of low‐voltage fast activity. Epilepsia 2009;50:2514–2525. PubMed
Uva L, Saccucci S, Chikhladze M, et al. A novel focal seizure pattern generated in superficial layers of the olfactory cortex. J Neurosci 2017;37:3544–3554. PubMed PMC
Jefferys JGR, Jiruska P, de Curtis M, et al. Limbic Network Synchronization and Temporal Lobe Epilepsy In Noebels JL, Avoli M, Rogawski MA, et al. (Eds) Jasper's basic mechanisms of the epilepsies. Bethesda (MD): National Center for Biotechnology Information, 2012. PubMed
Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci 2007;30:309–316. PubMed
Buzsaki G, Horvath Z, Urioste R, et al. High‐frequency network oscillation in the hippocampus. Science 1992;256:1025–1027. PubMed
Engel J Jr, Bragin A, Staba R, et al. High‐frequency oscillations: what is normal and what is not? Epilepsia 2009;50:598–604. PubMed
Bragin A, Engel J Jr, Wilson CL, et al. High‐frequency oscillations in human brain. Hippocampus 1999;9:137–142. PubMed
Jiruska P, Csicsvari J, Powell AD, et al. High‐frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J Neurosci 2010;30:5690–5701. PubMed PMC
Foffani G, Uzcategui YG, Gal B, et al. Reduced spike‐timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron 2007;55:930–941. PubMed
Dzhala VI, Staley KJ. Mechanisms of fast ripples in the hippocampus. J Neurosci 2004;24:8896–8906. PubMed PMC
Bragin A, Mody I, Wilson CL, et al. Local generation of fast ripples in epileptic brain. J Neurosci 2002;22:2012–2021. PubMed PMC
Gliske SV, Stacey WC, Lim E, et al. Emergence of narrowband high frequency oscillations from asynchronous, uncoupled neural firing. Int J Neural Syst 2017;27:1650049. PubMed PMC
Khosravani H, Pinnegar CR, Mitchell JR, et al. Increased high‐frequency oscillations precede in vitro low‐Mg seizures. Epilepsia 2005;46:1188–1197. PubMed
Draguhn A, Traub RD, Schmitz D, et al. Electrical coupling underlies high‐frequency oscillations in the hippocampus in vitro. Nature 1998;394:189–192. PubMed
Fink CG, Gliske S, Catoni N, et al. Network mechanisms generating abnormal and normal hippocampal high‐frequency oscillations: a computational analysis. eNeuro 2015;2. PubMed PMC
Matsumoto A, Brinkmann BH, Matthew Stead S, et al. Pathological and physiological high‐frequency oscillations in focal human epilepsy. J Neurophysiol 2013;110:1958–1964. PubMed PMC
Frauscher B, von Ellenrieder N, Ferrari‐Marinho T, et al. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 2015;138:1629–1641. PubMed PMC
Kudlacek J, Chvojka J, Posusta A, et al. Lacosamide and levetiracetam have no effect on sharp‐wave ripple rate. Frontiers in Neurology 2017;8:687. PubMed PMC
Ikeda A, Terada K, Mikuni N, et al. Subdural recording of ictal DC shifts in neocortical seizures in humans. Epilepsia 1996;37:662–674. PubMed
Ikeda A, Taki W, Kunieda T, et al. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 1999;122(Pt 5):827–838. PubMed
Huguenard JR, Prince DA. Intrathalamic rhythmicity studied in vitro: nominal T‐current modulation causes robust antioscillatory effects. J Neurosci 1994;14:5485–5502. PubMed PMC
Huntsman MM, Porcello DM, Homanics GE, et al. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 1999;283:541–543. PubMed
Toth TI, Bessaih T, Leresche N, et al. The properties of reticular thalamic neuron GABA(A) IPSCs of absence epilepsy rats lead to enhanced network excitability. Eur J Neurosci 2007;26:1832–1844. PubMed
von Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 1993;261:361–364. PubMed
Sorokin JM, Davidson TJ, Frechette E, et al. Bidirectional control of generalized epilepsy networks via rapid real‐time switching of firing mode. Neuron 2017;93:194–210. PubMed PMC
Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low‐threshold calcium current in thalamic neurons. Ann Neurol 1989;25:582–593. PubMed
Clemente‐Perez A, Makinson SR, Higashikubo B, et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep 2017;19:2130–2142. PubMed PMC
Anderson WW, Lewis DV, Swartzwelder HS, et al. Magnesium‐free medium activates seizure‐like events in the rat hippocampal slice. Brain Res 1986;398:215–219. PubMed
Gutierrez R, Armand V, Schuchmann S, et al. Epileptiform activity induced by low Mg2+ in cultured rat hippocampal slices. Brain Res 1999;815:294–303. PubMed
Tancredi V, Hwa GG, Zona C, et al. Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features. Brain Res 1990;511:280–290. PubMed
McLaughlin SG, Szabo G, Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol 1971;58:667–687. PubMed PMC
Dreier JP, Zhang CL, Heinemann U. Phenytoin, phenobarbital, and midazolam fail to stop status epilepticus‐like activity induced by low magnesium in rat entorhinal slices, but can prevent its development. Acta Neurol Scand 1998;98:154–160. PubMed
Quilichini PP, Diabira D, Chiron C, et al. Persistent epileptiform activity induced by low Mg2+ in intact immature brain structures. Eur J Neurosci 2002;16:850–860. PubMed
Zhang CL, Dreier JP, Heinemann U. Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 1995;20:105–111. PubMed
Perreault P, Avoli M. 4‐aminopyridine‐induced epileptiform activity and a GABA‐mediated long‐lasting depolarization in the rat hippocampus. J Neurosci 1992;12:104–115. PubMed PMC
Bruckner C, Stenkamp K, Meierkord H, et al. Epileptiform discharges induced by combined application of bicuculline and 4‐aminopyridine are resistant to standard anticonvulsants in slices of rats. Neurosci Lett 1999;268:163–165. PubMed
Bruckner C, Heinemann U. Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4‐aminopyridine in combined entorhinal cortex‐hippocampal slices. Brain Res 2000;859:15–20. PubMed
Yaari Y, Konnerth A, Heinemann U. Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 1986;56:424–438. PubMed
Haas HL, Jefferys JG. Low‐calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 1984;354:185–201. PubMed PMC
Taylor CP, Dudek FE. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 1982;218:810–812. PubMed
Pumain R, Menini C, Heinemann U, et al. Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp Neurol 1985;89:250–258. PubMed
Feng Z, Durand DM. Low‐calcium epileptiform activity in the hippocampus in vivo. J Neurophysiol 2003;90:2253–2260. PubMed
Stasheff SF, Anderson WA, Clark S, et al. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science 1989;245:648–652. PubMed
Traynelis SF, Dingledine R. Potassium‐induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 1988;59:259–276. PubMed
Yamamoto C, Kawai N. Seizure discharges evoked in vitro in thin section from guinea pig hippocampus. Science 1967;155:341–342. PubMed
Macdonald RL, Barker JL. Pentylenetetrazol and penicillin are selective antagonists of GABA‐mediated post‐synaptic inhibition in cultured mammalian neurones. Nature 1977;267:720–721. PubMed
Hablitz JJ. Picrotoxin‐induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J Neurophysiol 1984;51:1011–1027. PubMed
Westbrook GL, Lothman EW. Cellular and synaptic basis of kainic acid‐induced hippocampal epileptiform activity. Brain Res 1983;273:97–109. PubMed
Uva L, Librizzi L, Marchi N, et al. Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea‐pig brain requires enhancement of blood‐brain barrier permeability. Neuroscience 2008;151:303–312. PubMed PMC
Nagao T, Alonso A, Avoli M. Epileptiform activity induced by pilocarpine in the rat hippocampal‐entorhinal slice preparation. Neuroscience 1996;72:399–408. PubMed
Schwartzkroin PA, Prince DA. Effects of TEA on hippocampal neurons. Brain Res 1980;185:169–181. PubMed
Marchi N, Oby E, Batra A, et al. In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 2007;48:1934–1946. PubMed PMC
Rutecki PA, Yang Y. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine. J Neurophysiol 1998;79:3019–3029. PubMed
Fisher RS, Alger BE. Electrophysiological mechanisms of kainic acid‐induced epileptiform activity in the rat hippocampal slice. J Neurosci 1984;4:1312–1323. PubMed PMC
Noe FM, Bellistri E, Colciaghi F, et al. Kainic acid‐induced albumin leak across the blood‐brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016;57:967–976. PubMed
Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991;37:173–182. PubMed
Berdichevsky Y, Saponjian Y, Park KI, et al. Staged anticonvulsant screening for chronic epilepsy. Ann Clin Transl Neurol 2016;3:908–923. PubMed PMC
Liu J, Saponjian Y, Mahoney MM, et al. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PLoS ONE 2017;12:e0172677. PubMed PMC
Royeck M, Kelly T, Opitz T, et al. Downregulation of spermine augments dendritic persistent sodium currents and synaptic integration after status epilepticus. J Neurosci 2015;35:15240–15253. PubMed PMC
Kobayashi M, Wen X, Buckmaster PS. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 2003;23:8471–8479. PubMed PMC
Tsakiridou E, Bertollini L, de Curtis M, et al. Selective increase in T‐type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 1995;15:3110–3117. PubMed PMC
Bernard C, Anderson A, Becker A, et al. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 2004;305:532–535. PubMed
Lillis KP, Dulla C, Maheshwari A, et al. WONOEP appraisal: molecular and cellular imaging in epilepsy. Epilepsia 2015;56:505–513. PubMed PMC
Kibler AB, Durand DM. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro. Epilepsia 2011;52:1590–1600. PubMed PMC
Ang CW, Carlson GC, Coulter DA. Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J Neurosci 2006;26:11850–11856. PubMed PMC
Yang HH, St‐Pierre F. Genetically encoded voltage indicators: opportunities and challenges. J Neurosci 2016;36:9977–9989. PubMed PMC
Benar CG, Chauviere L, Bartolomei F, et al. Pitfalls of high‐pass filtering for detecting epileptic oscillations: a technical note on “false” ripples. Clin Neurophysiol 2010;121:301–310. PubMed
Roehri N, Lina JM, Mosher JC, et al. Time‐frequency strategies for increasing high‐frequency oscillation detectability in intracerebral EEG. IEEE Trans Biomed Eng 2016;63:2595–2606. PubMed PMC
Yael D, Bar‐Gad I. Filter based phase distortions in extracellular spikes. PLoS ONE 2017;12:e0174790. PubMed PMC
Griffin A, Krasniak C, Baraban SC. Advancing epilepsy treatment through personalized genetic zebrafish models. Prog Brain Res 2016;226:195–207. PubMed
Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci 2015;18:339–343. PubMed
Paz JT, Huguenard JR. Optogenetics and epilepsy: past, present and future. Epilepsy Curr 2015;15:34–38. PubMed PMC
Krook‐Magnuson E, Soltesz I. Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nat Neurosci 2015;18:331–338. PubMed PMC
Galanopoulou AS, Kokaia M, Loeb JA, et al. Epilepsy therapy development: technical and methodologic issues in studies with animal models. Epilepsia 2013;54(Suppl 4):13–23. PubMed PMC
Uva L, Trombin F, Carriero G, et al. Seizure‐like discharges induced by 4‐aminopyridine in the olfactory system of the in vitro isolated guinea pig brain. Epilepsia 2013;54:605–615. PubMed PMC
Jensen MS, Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 1997;77:1224–233. PubMed
Stasheff SF, Bragdon AC, Wilson WA. Induction of epileptiform activity in hippocampal slices by trains of electrical stimuli. Brain Res. 1985;344:296–302. PubMed
Dyhrfjeld‐Johnsen J, Berdichevsky Y, Swiercz W, et al. Interictal spikes precedeictal discharges in an organotypic hippocampal slice culture model of epileptogenesis. J Clin Neurophysiol 2010;27:418–424. PubMed PMC
Avoli M, Drapeau C, Perreault P, et al. Epileptiform activity induced by low chloride medium in the CA1 subfield of the hippocampal slice. J Neurophysiol. 1990;64:1747–1757. PubMed
Chamberlin NL, Dingledine R. GABAergic inhibition and the induction of spontaneous epileptiform activity by low chloride and high potassium in the hippocampal slice. Brain Res 1988;445:12–18. PubMed
Yamamoto C, Kawai N. Generation of the seizure discharge in thin sections from the guinea pig brain in chloride‐free medium in vitro. Jpn J Physiol 1968;18:620–631. PubMed
Yamamoto C, Kawai N. Origin of the seizure discharge evoked in vitro in thin sections from the guinea pig dentate gyrus. Jpn J Physiol 1969;19:119–129. PubMed
Piredda S, Yonekawa W, Whittingham TS, et al. Effects of antiepileptic drugs on pentylenetetrazole‐induced epileptiform activity in the in vitro hippocampus. Epilepsia 1986;27:341–346. PubMed
Schwartzkroin PA, Prince DA. Penicillin‐induced epileptiform activity in the hippocampal in vitro prepatation. Ann Neurol 1977;1:463–1469. PubMed
Sokal DM, Mason R, Parker TL. Multi‐neuronal recordings reveal a differential effect of thapsigargin on bicuculline‐ or gabazine‐induced epileptiform excitability in rat hippocampal neuronal networks. Neuropharmacology 2000;39:2408–2417. PubMed
Uva L, Librizzi L, Wendling F, et al. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal‐parahippocampal region of the isolated Guinea pig brain. Epilepsia 2005;46:1914–1925. PubMed
Gnatkovsky V, Librizzi L, Trombin F, et al. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 2008;64:674–686. PubMed
Khalilov I, Holmes GL, Ben‐Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 2003;6:1079–1085. PubMed
Noé FM, Bellistri E, Colciaghi F, et al. Kainic acid‐induced albumin leak across the blood‐brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016;57:967–976. PubMed