Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30555491
PubMed Central
PMC6284040
DOI
10.3389/fimmu.2018.02829
Knihovny.cz E-zdroje
- Klíčová slova
- candida, macrophages, mast cells, microbiota, phagocytosis,
- MeSH
- Candida albicans imunologie MeSH
- cytokiny imunologie MeSH
- fagocytóza * MeSH
- kandidóza imunologie patologie MeSH
- makrofágy imunologie fyziologie MeSH
- mastocyty imunologie patologie MeSH
- membránové glykoproteiny asociované s lyzozomy imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- Lamp1 protein, mouse MeSH Prohlížeč
- membránové glykoproteiny asociované s lyzozomy MeSH
Mast cells (MCs) are long-lived immune cells widely distributed at mucosal surfaces and are among the first immune cell type that can get in contact with the external environment. This study aims to unravel the mechanisms of reciprocal influence between mucosal MCs and Candida albicans as commensal/opportunistic pathogen species in humans. Stimulation of bone marrow-derived mast cells (BMMCs) with live forms of C. albicans induced the release of TNF-α, IL-6, IL-13, and IL-4. Quite interestingly, BMMCs were able to engulf C. albicans hyphae, rearranging their α-tubulin cytoskeleton and accumulating LAMP1+ vesicles at the phagocytic synapse with the fungus. Candida-infected MCs increased macrophage crawling ability and promoted their chemotaxis against the infection. On the other side, resting MCs inhibited macrophage phagocytosis of C. albicans in a contact-dependent manner. Taken together, these results indicate that MCs play a key role in the maintenance of the equilibrium between the host and the commensal fungus C. albicans, limiting pathological fungal growth and modulating the response of resident macrophages during infections.
Department of Experimental Medicine University of Perugia Perugia Italy
Department of Medicine University of Udine Udine Italy
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Gurish MF, Austen KF. Developmental origin and functional specialization of mast cell subsets. Immunity (2012) 37:25–33. 10.1016/j.immuni.2012.07.003 PubMed DOI
Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, et al. . Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. (2010) 3:111–28. 10.1038/mi.2009.136 PubMed DOI
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol. (2015) 8:444–63. 10.1038/mi.2014.131 PubMed DOI PMC
Johnzon C, Rönnberg E, Pejler G. The role of mast cells in bacterial infection. Am J Pathol. (2016) 186:4–14. 10.1016/j.ajpath.2015.06.024 PubMed DOI
Piliponsky AM, Romani L. The contribution of mast cells to bacterial and fungal infection immunity. Immunol Rev. (2018) 282:188–97. 10.1111/imr.12623 PubMed DOI PMC
Denning DW. Calling upon all public health mycologists. Eur J Clin Microbiol Infect Dis. (2017) 36:923–4. 10.1007/s10096-017-2909-8 PubMed DOI
Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses (2009) 52:197–205. 10.1111/j.1439-0507.2009.01691.x PubMed DOI
Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. (2011) 9:737–48. 10.1038/nrmicro2636 PubMed DOI
Dalle F, Wächtler B, L'Ollivier C, Holland G, Bannert N, Wilson D, et al. . Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. (2010) 12:248–71. 10.1111/j.1462-5822.2009.01394.x PubMed DOI
Romani L. Immunity to fungal infections. Nat Rev Immunol. (2011) 11:275–88. 10.1038/nri2939 PubMed DOI
Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, et al. . Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. (2006) 116:1642–50. 10.1172/JCI27114 PubMed DOI PMC
Netea MG, Joosten LA, van der Meer JW, Van Der, Kullberg B. Immune defence against Candida fungal infections. Nat Rev Immunol. (2015) 15:630–42. 10.1038/nri3897 PubMed DOI
Sakurai A, Yamaguchi N, Sonoyama K. Cell wall polysaccharides of Candida albicans induce mast cell degranulation in the gut. Biosci Microbiota Food Health (2012) 31:67–70. 10.12938/bmfh.31.67 PubMed DOI PMC
Pinke KH, Lima HG, Cunha FQ, Lara VS. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology (2016) 221:220–7. 10.1016/j.imbio.2015.09.004 PubMed DOI
Trevisan E, Vita F, Medic N, Soranzo MR, Zabucchi G, Borelli V. Mast cells kill Candida albicans in the extracellular environment but spare ingested fungi from death. Inflammation (2014) 37:2174–89. 10.1007/s10753-014-9951-9 PubMed DOI
Nieto-Patlán A, Campillo-Navarro M, Rodríguez-Cortés O, Muñoz-Cruz S, Wong-Baeza I, Estrada-Parra S, et al. . Recognition of Candida albicans by dectin-1 induces mast cell activation. Immunobiology (2015) 220:1093–100. 10.1016/j.imbio.2015.05.005 PubMed DOI
Lopes JP, Stylianou M, Nilsson G, Urban CF. Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells. Sci Rep. (2015) 5:12287. 10.1038/srep12287 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. . Fiji: an open source platform for biological image analysis. Nat Methods (2012) 9:676–82. 10.1038/nmeth.2019 PubMed DOI PMC
Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al. . Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse.' Nature (2011) 472:471–5. 10.1038/nature10071 PubMed DOI PMC
Cheng SC, van de Veerdonk FL, Lenardon M, Stoffels M, Plantinga T, Smeekens S, et al. . The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol. (2011) 90:357–66. 10.1189/jlb.1210702 PubMed DOI PMC
Labrousse AM, Meunier E, Record J, Labernadie A, Beduer A, Vieu C, et al. . Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages. Front Immunol. (2011) 2:51. 10.3389/fimmu.2011.00051 PubMed DOI PMC
Schinwald A, Donaldson K. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part Fibre Toxicol. 9:34. 10.1186/1743-8977-9-34 PubMed DOI PMC
Kinchen JM, Ravichandran KS. Phagosome maturation : going through the acid test. Nat Rev Mol Cell Biol. (2008) 9:781–95. 10.1038/nrm2515 PubMed DOI PMC
Frossi B, Mion F, Tripodo C, Colombo MP, Pucillo CE. Rheostatic functions of mast cells in the control of innate and adaptive immune responses. Trends Immunol. (2017) 38:648–56. 10.1016/j.it.2017.04.001 PubMed DOI
Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. (2016) 14:163–76. 10.1038/nrmicro.2015.21 PubMed DOI
Dahdah A, Gautier G, Attout T, Fiore F, Lebourdais E, Msallam R, et al. . Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest. (2014) 124:4577–89. 10.1172/JCI75212 PubMed DOI PMC
Ketavarapu JM, Rodriguez AR, Yu JJ, Cong Y, Murthy AK, Forsthuber TG, et al. . Mast cells inhibit intramacrophage Francisella tularensis replication via contact and secreted products including IL-4. Proc Natl Acad Sci USA. (2008) 105:9313–8. 10.1073/pnas.0707636105 PubMed DOI PMC
Foxman EF, Kunkel EJ, Butcher EC. Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation. J Cell Biol. (1999) 147:577–87. 10.1083/jcb.147.3.577 PubMed DOI PMC
Rodriguez AR, Yu JJ, Murthy AK, Guentzel MN, Klose KE, Forsthuber TG, et al. . Mast cell/IL-4 control of Francisella tularensis replication and host cell death is associated with increased ATP production and phagosomal acidification. Mucosal Immunol. (2011) 4:217–26. 10.1038/mi.2010.59 PubMed DOI PMC
Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol. (2012) 87:325–41. 10.1086/668166 PubMed DOI
Rosenberg E, Zilber-Rosenberg I. Microbes drive evolution of animals and plants: the hologenome concept. MBio 7:e01395. 10.1128/mBio.01395-15 PubMed DOI PMC
Bach J. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. (2017) 18:105–20. 10.1038/nri.2017.111 PubMed DOI
Renga G, Moretti S, Oikonomou V, Borghi M, Zelante T, Paolicelli G, et al. . IL-9 and mast cells are key players of Candida albicans commensalism and pathogenesis in the gut. Cell Rep. (2018) 23:1767–78. 10.1016/j.celrep.2018.04.034 PubMed DOI PMC
Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. (2005) 24:1277–86. 10.1038/sj.emboj.7600594 PubMed DOI PMC
Maxson ME, Naj X, O'Meara TR, Plumb JD, Cowen LE, Grinstein S. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. Elife 7:e34798. 10.7554/eLife.34798 PubMed DOI PMC
Moon TC, Befus AD, Kulka M. Mast cell mediators : their differential release and the secretory pathways involved. Front Immunol. (2014) 5:569. 10.3389/fimmu.2014.00569 PubMed DOI PMC
Fukuishi N, Murakami S, Ohno A, Yamanaka N, Matsui N, Fukutsuji K, et al. . Does β-hexosaminidase function only as a degranulation indicator in mast cells? the primary role of β-hexosaminidase in mast cell granules. J Immunol. (2014) 193:1886–94. 10.4049/jimmunol.1302520 PubMed DOI
Joulia R, Gaudenzio N, Rodrigues M, Lopez J, Blanchard N, Valitutti S, et al. . Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence. Nat Commun. (2015) 6:6174. 10.1038/ncomms7174 PubMed DOI
Mencacci A, Del Sero G, Cenci E, D'Ostiani CF, Bacci A, Montagnoli C, et al. . Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J Exp Med. (1998) 187:307–317. PubMed PMC
Galli SJ, Gaudenzio N. Human mast cells as antigen-presenting cells: when is this role important in vivo? J Allergy Clin Immunol. (2018) 141:92–3. 10.1016/j.jaci.2017.05.029 PubMed DOI
Lotfi-Emran S, Ward BR, Le QT, Pozez AL, Manjili MH, Woodfolk JA, et al. . Human mast cells present antigen to autologous CD4+ T cells. J Allergy Clin Immunol. (2018) 141:311–21.e10. 10.1016/j.jaci.2017.02.048 PubMed DOI
Malaviya R, Abraham SN. Mast cell modulation of immune responses to bacteria. Immunol Rev. (2001) 179:16–24. 10.1034/j.1600-065X.2001.790102.x PubMed DOI
Wesolowski J, Paumet F. Escherichia coli exposure inhibits exocytic SNARE-mediated membrane fusion in mast cells. Traffic (2014) 15:516–30. 10.1111/tra.12159 PubMed DOI PMC
Rudkin FM, Bain JM, Walls C, Lewis LE, Gow NA, Erwig LP. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present. MBio (2013) 4:e00810–13. 10.1128/mBio.00810-13 PubMed DOI PMC
Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, et al. . CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity (2009) 29:771–81. 10.1016/j.immuni.2008.08.018 PubMed DOI PMC
Merluzzi S, Frossi B, Gri G, Parusso S, Tripodo C, Pucillo C. Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood (2010) 115:2810–7. 10.1182/blood-2009-10-250126 PubMed DOI
Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, et al. . Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood (2009) 114:2639–48. 10.1182/blood-2009-05-220004 PubMed DOI
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. (2010) 12:319–30. 10.1007/s11894-010-0131-2 PubMed DOI PMC