A Comparative Study of Advanced Stationary Phases for Fast Liquid Chromatography Separation of Synthetic Food Colorants
Language English Country Switzerland Media electronic
Document type Comparative Study, Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
SVV 260 412
Univerzita Karlova v Praze
PubMed
30558325
PubMed Central
PMC6321072
DOI
10.3390/molecules23123335
PII: molecules23123335
Knihovny.cz E-resources
- Keywords
- chromatography, dye, fast chromatography, food additive, food colorant, monolithic column, porous shell column,
- MeSH
- Coloring Agents chemistry MeSH
- Chromatography, Liquid methods MeSH
- Beer analysis MeSH
- Food Coloring Agents isolation & purification MeSH
- Reproducibility of Results MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Coloring Agents MeSH
- Food Coloring Agents MeSH
Food analysis demands fast methods for routine control and high throughput of samples. Chromatographic separation enables simultaneous determination of numerous compounds in complex matrices, several approaches increasing separation efficiency and speed of analysis were involved. In this work, modern types of column with monolithic rod or superficially porous particles were employed and compared for determination of eight synthetic food dyes, their chromatographic performance was evaluated. During method optimization, cyano stationary phase Chromolith Performance CN 100 × 4.6 mm and Ascentis Express ES-CN 100 × 4.6 mm, 5 µm were selected for the separation of polar colorants. The separation was performed by gradient elution of acetonitrile/methanol and 2% water solution of ammonium acetate at flow rate 2.0 mL min-1. Mobile phase composition and the gradients were optimized in order to enable efficient separation on both columns. The method using fused-core particle column provided higher separation efficiency, narrow peaks of analytes resulted in increased peak capacity and shortening of analysis time. After the validation, the method was applied for analysis of coloured beers, soft drinks and candies.
See more in PubMed
Amchova P., Kotolova H., Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol. 2015;73:914–922. doi: 10.1016/j.yrtph.2015.09.026. PubMed DOI
Martins N., Roriz C.L., Morales P., Barros L., Ferreira I.C.F.R. Food colorants: Challenges, opportunities and current desires of agroindustries to ensure expectations and regulatory practices. Trends Food Sci. Technol. 2016;52:1–15. doi: 10.1016/j.tifs.2016.03.009. DOI
Kus E., Eroglu H.E. Genotoxic and cytotoxic effects of sunset yellow and brilliant blue, colorant food additives, on human blood lymphocytes. Pak. J. Pharm. Sci. 2015;28:227–230. PubMed
Sarıkaya R., Selvi M., Erkoc F. Evaluation of potential genotoxicity of five food dyes using the somatic mutation and recombination test. Chemosphere. 2012;88:974–979. doi: 10.1016/j.chemosphere.2012.03.032. PubMed DOI
Carocho M., Barreiro M.F., Morales P., Ferreira I.C.F.R. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014;13:377–399. doi: 10.1111/1541-4337.12065. PubMed DOI
Axon A., May F.E.B., Gaughan L.E., Williams F.M., Blain P.G., Wright M.C. Tartrazine and sunset yellow are xenoestrogens in a new screening assay to identify modulators of human oestrogen receptor transcriptional activity. Toxicology. 2012;298:40–51. doi: 10.1016/j.tox.2012.04.014. PubMed DOI
Regulation EC No 1333/2008 on food additives. [(accessed on 24 October 2018)];Off. J. Eur. Union. 2008 L354:16–33. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0016:0033:en:PDF.
Leleu C., Boulitrop C., Bel B., Jeudy G., Vabres P., Collet E. Quinoline Yellow dye-induced fixed food-and-drug eruption. Contact Dermat. 2013;68:187–188. doi: 10.1111/cod.12019. PubMed DOI
Stevens L.J., Kuczek T., Burgess J.R., Stochelski M.A., Arnold L.E., Galland L. Mechanisms of behavioral, atopic and other reactions to artificial food colors in children. Nutr. Rev. 2013;71:268–281. doi: 10.1111/nure.12023. PubMed DOI
Vojdani A., Vojdani C. Immune reactivity to food coloring. Altern. Ther. Health Med. 2015;21:52–62. PubMed
Sierra-Rosales P., Toledo-Neira C., Squella J.A. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sens. Actuator B-Chem. 2017;240:1257–1264. doi: 10.1016/j.snb.2016.08.135. DOI
Yi J., Zeng L., Wu Q., Yang L., Xie T. Sensitive simultaneous determination of synthetic food colorants in preserved fruit samples by capillary electrophoresis with contactless conductivity detection. Food Anal. Method. 2017 doi: 10.1007/s12161-017-1141-6. DOI
Dossi N., Toniolo R., Pizzariello A., Susmel S., Perennes F., Bontempelli G. A capillary electrophoresis microsystem for the rapid in-channel amperometric detection of synthetic dyes in food. J. Electroanal. Chem. 2007;601:1–7. doi: 10.1016/j.jelechem.2006.10.019. DOI
Heidarizadi E., Tabaraki R. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations. Talanta. 2016;148:237–246. doi: 10.1016/j.talanta.2015.10.075. PubMed DOI
Asfaram A., Ghaedi M., Goudarzi A. Optimization of ultrasound-assisted dispersive solid-phase microextraction based on nanoparticles followed by spectrophotometry for the simultaneous determination of dyes using experimental design. Ultrason. Sonochem. 2016;32:407–417. doi: 10.1016/j.ultsonch.2016.04.009. PubMed DOI
Sobańska A.W., Pyzowski J., Brzezińska E. SPE/TLC/Densitometric quantification of selected synthetic food dyes in liquid foodstuffs and pharmaceutical preparations. J. Anal. Methods Chem. 2017 doi: 10.1155/2017/9528472. PubMed DOI PMC
Zhang Y., Zhou H., Wang Y., Wu X., Zhao Y. Simultaneous Determination of Seven Synthetic Colorants in Wine by Dispersive Micro-Solid-Phase Extraction Coupled with Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2015;53:210–218. doi: 10.1093/chromsci/bmu042. PubMed DOI
de Araújo Sigueira Bento W., Lima B.P., Paim A.P.S. Simultaneous determination of synthetic colorants in yogurt by HPLC. Food Chem. 2015;183:154–160. doi: 10.1016/j.foodchem.2015.03.050. PubMed DOI
Rejczak T., Tuzimski T. Application of high-performance liquid chromatography with diode array detector for simultaneous determination of 11 synthetic dyes in selected beverages and foodstuffs. Food Anal. Method. 2017;10:3572–3588. doi: 10.1007/s12161-017-0905-3. DOI
Lotfi Z., Mousavi H.Z., Sajjadi S.M. A hyperbranched polyamidoamine dedrimer grafted onto magnetized graphene oxide as a sorbent for the extraction of synthetic dyes from foodstuff. Microchim. Acta. 2017;184:4503–4512. doi: 10.1007/s00604-017-2484-9. DOI
Chen D., Zhang H., Feng J., Zeng D., Ding L., Liu X., Li B. Research on the determination of 10 industrial dyes in foodstuffs. J. Chromatogr. Sci. 2017;55:1021–1025. doi: 10.1093/chromsci/bmx070. PubMed DOI
Qi F., Jian N., Qian L., Cao W., Xu Q., Li J. Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in food. Anal. Bioanal. Chem. 2017;409:5697–5709. doi: 10.1007/s00216-017-0510-8. PubMed DOI
Zhu S., Zhou J., Jia H., Zhang H. Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent. Food Chem. 2018;243:351–356. doi: 10.1016/j.foodchem.2017.09.141. PubMed DOI
Davletbaeva P., Chocholouš P., Bulatov A., Šatínský D., Solich P. Sub-1 min separation in sequential injection chromatography for determination of synthetic water-soluble dyes in pharmaceutical formulation. J. Pharm. Biomed. Anal. 2017;143:123–129. doi: 10.1016/j.jpba.2017.05.036. PubMed DOI
Amelin V.G., Korotkov A.I., Andoralov A.M. Simultaneous determination of dyes of different classes in aquaculture products and spices using HPLC-high-resolution quadrupole time-of-flight mass spectrometry. J. Anal. Chem. 2017;72:183–190. doi: 10.1134/S1061934817020034. DOI
Guerra E., Llompart M., Garcia-Jares C. Miniaturized matrix solid-phase dispersion followed by liquid chromatography-tandem mass spectrometry for the quantification of synthetic dyes in cosmetics and foodstuffs used or consumed by children. J. Chromatogr. A. 2017;1529:29–38. doi: 10.1016/j.chroma.2017.10.063. PubMed DOI
Núñez O., Gallart-Ayala H., Martins C.P.B., Lucci P. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A. 2012;1228:298–323. doi: 10.1016/j.chroma.2011.10.091. PubMed DOI
Tanaka N., McCalley D.V. Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal. Chem. 2016;88:279–298. doi: 10.1021/acs.analchem.5b04093. PubMed DOI
Yildirim S., Yasar A. A Core-Shell Column Approach to Fast Determination of Synthetic Dyes in Foodstuffs by High-Performance Liquid Chromatography. Food Anal. Method. 2018;11:1581–1590. doi: 10.1007/s12161-017-1138-1. DOI