• This record comes from PubMed

A Comparative Study of Advanced Stationary Phases for Fast Liquid Chromatography Separation of Synthetic Food Colorants

. 2018 Dec 15 ; 23 (12) : . [epub] 20181215

Language English Country Switzerland Media electronic

Document type Comparative Study, Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund
SVV 260 412 Univerzita Karlova v Praze

Links

PubMed 30558325
PubMed Central PMC6321072
DOI 10.3390/molecules23123335
PII: molecules23123335
Knihovny.cz E-resources

Food analysis demands fast methods for routine control and high throughput of samples. Chromatographic separation enables simultaneous determination of numerous compounds in complex matrices, several approaches increasing separation efficiency and speed of analysis were involved. In this work, modern types of column with monolithic rod or superficially porous particles were employed and compared for determination of eight synthetic food dyes, their chromatographic performance was evaluated. During method optimization, cyano stationary phase Chromolith Performance CN 100 × 4.6 mm and Ascentis Express ES-CN 100 × 4.6 mm, 5 µm were selected for the separation of polar colorants. The separation was performed by gradient elution of acetonitrile/methanol and 2% water solution of ammonium acetate at flow rate 2.0 mL min-1. Mobile phase composition and the gradients were optimized in order to enable efficient separation on both columns. The method using fused-core particle column provided higher separation efficiency, narrow peaks of analytes resulted in increased peak capacity and shortening of analysis time. After the validation, the method was applied for analysis of coloured beers, soft drinks and candies.

See more in PubMed

Amchova P., Kotolova H., Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol. 2015;73:914–922. doi: 10.1016/j.yrtph.2015.09.026. PubMed DOI

Martins N., Roriz C.L., Morales P., Barros L., Ferreira I.C.F.R. Food colorants: Challenges, opportunities and current desires of agroindustries to ensure expectations and regulatory practices. Trends Food Sci. Technol. 2016;52:1–15. doi: 10.1016/j.tifs.2016.03.009. DOI

Kus E., Eroglu H.E. Genotoxic and cytotoxic effects of sunset yellow and brilliant blue, colorant food additives, on human blood lymphocytes. Pak. J. Pharm. Sci. 2015;28:227–230. PubMed

Sarıkaya R., Selvi M., Erkoc F. Evaluation of potential genotoxicity of five food dyes using the somatic mutation and recombination test. Chemosphere. 2012;88:974–979. doi: 10.1016/j.chemosphere.2012.03.032. PubMed DOI

Carocho M., Barreiro M.F., Morales P., Ferreira I.C.F.R. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014;13:377–399. doi: 10.1111/1541-4337.12065. PubMed DOI

Axon A., May F.E.B., Gaughan L.E., Williams F.M., Blain P.G., Wright M.C. Tartrazine and sunset yellow are xenoestrogens in a new screening assay to identify modulators of human oestrogen receptor transcriptional activity. Toxicology. 2012;298:40–51. doi: 10.1016/j.tox.2012.04.014. PubMed DOI

Regulation EC No 1333/2008 on food additives. [(accessed on 24 October 2018)];Off. J. Eur. Union. 2008 L354:16–33. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0016:0033:en:PDF.

Leleu C., Boulitrop C., Bel B., Jeudy G., Vabres P., Collet E. Quinoline Yellow dye-induced fixed food-and-drug eruption. Contact Dermat. 2013;68:187–188. doi: 10.1111/cod.12019. PubMed DOI

Stevens L.J., Kuczek T., Burgess J.R., Stochelski M.A., Arnold L.E., Galland L. Mechanisms of behavioral, atopic and other reactions to artificial food colors in children. Nutr. Rev. 2013;71:268–281. doi: 10.1111/nure.12023. PubMed DOI

Vojdani A., Vojdani C. Immune reactivity to food coloring. Altern. Ther. Health Med. 2015;21:52–62. PubMed

Sierra-Rosales P., Toledo-Neira C., Squella J.A. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sens. Actuator B-Chem. 2017;240:1257–1264. doi: 10.1016/j.snb.2016.08.135. DOI

Yi J., Zeng L., Wu Q., Yang L., Xie T. Sensitive simultaneous determination of synthetic food colorants in preserved fruit samples by capillary electrophoresis with contactless conductivity detection. Food Anal. Method. 2017 doi: 10.1007/s12161-017-1141-6. DOI

Dossi N., Toniolo R., Pizzariello A., Susmel S., Perennes F., Bontempelli G. A capillary electrophoresis microsystem for the rapid in-channel amperometric detection of synthetic dyes in food. J. Electroanal. Chem. 2007;601:1–7. doi: 10.1016/j.jelechem.2006.10.019. DOI

Heidarizadi E., Tabaraki R. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations. Talanta. 2016;148:237–246. doi: 10.1016/j.talanta.2015.10.075. PubMed DOI

Asfaram A., Ghaedi M., Goudarzi A. Optimization of ultrasound-assisted dispersive solid-phase microextraction based on nanoparticles followed by spectrophotometry for the simultaneous determination of dyes using experimental design. Ultrason. Sonochem. 2016;32:407–417. doi: 10.1016/j.ultsonch.2016.04.009. PubMed DOI

Sobańska A.W., Pyzowski J., Brzezińska E. SPE/TLC/Densitometric quantification of selected synthetic food dyes in liquid foodstuffs and pharmaceutical preparations. J. Anal. Methods Chem. 2017 doi: 10.1155/2017/9528472. PubMed DOI PMC

Zhang Y., Zhou H., Wang Y., Wu X., Zhao Y. Simultaneous Determination of Seven Synthetic Colorants in Wine by Dispersive Micro-Solid-Phase Extraction Coupled with Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2015;53:210–218. doi: 10.1093/chromsci/bmu042. PubMed DOI

de Araújo Sigueira Bento W., Lima B.P., Paim A.P.S. Simultaneous determination of synthetic colorants in yogurt by HPLC. Food Chem. 2015;183:154–160. doi: 10.1016/j.foodchem.2015.03.050. PubMed DOI

Rejczak T., Tuzimski T. Application of high-performance liquid chromatography with diode array detector for simultaneous determination of 11 synthetic dyes in selected beverages and foodstuffs. Food Anal. Method. 2017;10:3572–3588. doi: 10.1007/s12161-017-0905-3. DOI

Lotfi Z., Mousavi H.Z., Sajjadi S.M. A hyperbranched polyamidoamine dedrimer grafted onto magnetized graphene oxide as a sorbent for the extraction of synthetic dyes from foodstuff. Microchim. Acta. 2017;184:4503–4512. doi: 10.1007/s00604-017-2484-9. DOI

Chen D., Zhang H., Feng J., Zeng D., Ding L., Liu X., Li B. Research on the determination of 10 industrial dyes in foodstuffs. J. Chromatogr. Sci. 2017;55:1021–1025. doi: 10.1093/chromsci/bmx070. PubMed DOI

Qi F., Jian N., Qian L., Cao W., Xu Q., Li J. Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in food. Anal. Bioanal. Chem. 2017;409:5697–5709. doi: 10.1007/s00216-017-0510-8. PubMed DOI

Zhu S., Zhou J., Jia H., Zhang H. Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent. Food Chem. 2018;243:351–356. doi: 10.1016/j.foodchem.2017.09.141. PubMed DOI

Davletbaeva P., Chocholouš P., Bulatov A., Šatínský D., Solich P. Sub-1 min separation in sequential injection chromatography for determination of synthetic water-soluble dyes in pharmaceutical formulation. J. Pharm. Biomed. Anal. 2017;143:123–129. doi: 10.1016/j.jpba.2017.05.036. PubMed DOI

Amelin V.G., Korotkov A.I., Andoralov A.M. Simultaneous determination of dyes of different classes in aquaculture products and spices using HPLC-high-resolution quadrupole time-of-flight mass spectrometry. J. Anal. Chem. 2017;72:183–190. doi: 10.1134/S1061934817020034. DOI

Guerra E., Llompart M., Garcia-Jares C. Miniaturized matrix solid-phase dispersion followed by liquid chromatography-tandem mass spectrometry for the quantification of synthetic dyes in cosmetics and foodstuffs used or consumed by children. J. Chromatogr. A. 2017;1529:29–38. doi: 10.1016/j.chroma.2017.10.063. PubMed DOI

Núñez O., Gallart-Ayala H., Martins C.P.B., Lucci P. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A. 2012;1228:298–323. doi: 10.1016/j.chroma.2011.10.091. PubMed DOI

Tanaka N., McCalley D.V. Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal. Chem. 2016;88:279–298. doi: 10.1021/acs.analchem.5b04093. PubMed DOI

Yildirim S., Yasar A. A Core-Shell Column Approach to Fast Determination of Synthetic Dyes in Foodstuffs by High-Performance Liquid Chromatography. Food Anal. Method. 2018;11:1581–1590. doi: 10.1007/s12161-017-1138-1. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...