Characterization of Salmonella Typhimurium and its monophasic variant 1,4, [5],12:i:- isolated from different sources
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
30721446
DOI
10.1007/s12223-019-00683-6
PII: 10.1007/s12223-019-00683-6
Knihovny.cz E-resources
- Keywords
- Multidrug resistance, Plasmid-borne virulence genes, Prophage-related genes, Salmonella 1,4, [5],12:i:-, Salmonella Typhimurium,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Genes, Bacterial genetics MeSH
- Genetic Variation MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Water Microbiology * MeSH
- Drug Resistance, Multiple, Bacterial MeSH
- Molecular Typing MeSH
- Plasmids genetics MeSH
- Food Microbiology * MeSH
- Prophages genetics MeSH
- Salmonella typhimurium classification drug effects genetics isolation & purification MeSH
- Salmonella Infections epidemiology microbiology MeSH
- Serogroup MeSH
- Virulence genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
In order to characterize the most commonly detected Salmonella serotypes, we tested 124 isolates of S. Typhimurium and 89 isolates of the monophasic variant of S. Typhimurium (S. 1,4, [5],12:i:-) for their antimicrobial susceptibility by means of the Kirby-Bauer disk-diffusion method, and for the detection of 19 genes (four Phage Markers (g13, Sieb, eat, g8), ten prophage-related virulence genes (gipA, gtgB, nanH, gogB, grvA, sopE, sspH1, sspH2, sodC1, gtgE), and five plasmid-borne virulence genes (spvC, pefA, mig5, rcK, srgA)) by means of PCR-based assays. A total of 213 strains were analyzed from, humans (n = 122), animals (n = 25), food (n = 46), and irrigation water (n = 20). S. Typhimurium isolates showed higher variability, in both their resistance profiles and molecular typing, than S. 1,4, [5],12:i:-. Strains from irrigation water displayed significantly higher susceptibility to antibiotics than those from the other sources. Resistance to ampicillin, streptomycin, sulfonamide, and tetracycline was the most commonly detected resistance profile (R-type), being in serovar S. 1,4, [5],12:i:-, frequently associated to resistance to other antimicrobials. Significant differences in genetic profiles in the two abovementioned Salmonella serotypes were found. None of the plasmid-borne virulence genes investigated were detected in S. 1,4, [5],12:i:- isolates, while those genes, characterized 37.9% of the S. Typhimurium strains. Differences in the prevalence of some molecular targets between the two Salmonella serotypes deserve further study. Importantly, the grvA gene was found exclusively in S. Typhimurium strains, whereas sopE, sodC, gtgB, and gipA were mainly detected, with a statistically significant difference, in S. 1,4, [5],12:i:- isolates.
Department of Agriculture University of Naples Federico 2 Portici Naples Italy
Department of Veterinary Medicine and Animal Production University of Naples Federico 2 Naples Italy
See more in PubMed
Infect Genet Evol. 2009 Sep;9(5):996-1005 PubMed
J Clin Microbiol. 1996 Oct;34(10):2619-22 PubMed
Res Microbiol. 2010 Jan-Feb;161(1):26-9 PubMed
Med Hypotheses. 2012 Oct;79(4):484-6 PubMed
Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9845-50 PubMed
Euro Surveill. 2007 Jun 01;12(6):E11-2 PubMed
J Bacteriol. 2001 Jan;183(2):611-20 PubMed
Int J Food Microbiol. 2011 Jan 31;145(1):250-7 PubMed
J Clin Microbiol. 2003 Jun;41(6):2395-400 PubMed
Foodborne Pathog Dis. 2009 Jul-Aug;6(6):711-7 PubMed
Appl Environ Microbiol. 2004 Apr;70(4):2497-502 PubMed
Appl Environ Microbiol. 2012 Feb;78(4):922-32 PubMed
FEMS Microbiol Lett. 1994 Nov 15;124(1):1-9 PubMed
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8754-61 PubMed
J Clin Microbiol. 2010 Jun;48(6):2103-9 PubMed
Indian J Exp Biol. 2005 Jul;43(7):631-4 PubMed
PLoS Negl Trop Dis. 2010 Mar 09;4(3):e621 PubMed
J Appl Bacteriol. 1989 Jul;67(1):61-9 PubMed
BMC Vet Res. 2012 Oct 25;8:201 PubMed
Ital J Food Saf. 2018 Mar 31;7(1):6888 PubMed
Appl Environ Microbiol. 2006 Sep;72(9):5777-83 PubMed
FEMS Microbiol Lett. 2007 May;270(2):237-44 PubMed
Emerg Infect Dis. 2013 Aug;19(8):1239-44 PubMed
Foodborne Pathog Dis. 2011 Jun;8(6):741-3 PubMed
Vet Microbiol. 2005 Aug 10;109(1-2):113-20 PubMed
J Environ Qual. 2006 May 31;35(4):1170-80 PubMed
Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents PubMed
Int J Environ Res Public Health. 2014 Sep 29;11(10):10105-24 PubMed
PLoS One. 2015 Sep 11;10(9):e0137967 PubMed
Appl Environ Microbiol. 2003 Aug;69(8):4556-60 PubMed
J Bacteriol. 2002 Oct;184(19):5234-9 PubMed
Foodborne Pathog Dis. 2009 Jul-Aug;6(6):635-48 PubMed
Foodborne Pathog Dis. 2013 Nov;10(11):963-8 PubMed
Appl Environ Microbiol. 2010 Jul;76(14):4601-10 PubMed
Emerg Infect Dis. 2016 Apr;22(4):617-24 PubMed
Emerg Infect Dis. 2005 Jun;11(6):859-67 PubMed
Folia Microbiol (Praha). 2016 Jan;61(1):21-7 PubMed