Aspects of intradermal immunization with different adjuvants: The role of dendritic cells and Th1/Th2 response
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30742635
PubMed Central
PMC6370205
DOI
10.1371/journal.pone.0211896
PII: PONE-D-18-21655
Knihovny.cz E-zdroje
- MeSH
- adjuvancia imunologická farmakologie MeSH
- cytokiny imunologie MeSH
- dendritické buňky cytologie imunologie MeSH
- imunizace * MeSH
- injekce intradermální MeSH
- prasata MeSH
- Th1 buňky cytologie imunologie MeSH
- Th2 buňky cytologie imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- cytokiny MeSH
Intradermal (i.d.) application of vaccine is promising way how to induce specific immune response against particular pathogens. Adjuvants, substances added into vaccination dose with the aim to increase immunogenicity, play important role in activation of dendritic cells with subsequent activation of lymphocytes. They can, however, induce unwanted local reactions. The aim of the study was to determine the effect of i.d. administration of model antigen keyhole limped hemocyanine alone or with different adjuvants-aluminium hydroxide and oil-based adjuvants-on local histopathological reaction as well as dendritic cell activation at the site of administration and local cytokine and chemokine response. This was assessed at 4 and 24 hours after application. Selection of the adjuvants was based on the fact, that they differently enhance antibody or cell-mediated immunity. The results showed activation of dendritic cells and both Th1 and Th2 response stimulated by oil-based adjuvants. It was associated with higher expression of set of genes, incl. chemokine receptor CCR7 or Th1-associated chemokine CXCL10 and cytokine IFNγ. Application of the antigen with aluminium hydroxide induced higher expression of Th2-associated IL4 or IL13. On the other hand, both complete and incomplete Freund´s adjuvants provoked strong local reaction associated with influx of neutrophils. This was accompanied with high expression of proinflammatory IL1 or neutrophil chemoattractant CXCL8. Surprisingly, similarly strong local reaction was detected also after application of aluminium hydroxide-based adjuvant. The best balanced local reaction with sufficient activation of immune cells was detected after application of oil-based adjuvants Montanide and Emulsigen.
Department of Immunology Veterinary Research Institute Brno Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Bautista EM, Gregg D, Golde WT. Characterization and functional analysis of skin-derived dendritic cells from swine without a requirement for in vitro propagation. Vet Immunol Immunopathol. 2002;88: 131–148. PubMed
Buckwalter MR, Albert ML. Orchestration of the immune response by dendritic cells. Curr Biol. 2009;19: 355–361. PubMed
Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb Perspect Med. 2014;4: 1–20. PubMed PMC
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol. 2012;20: 50–57. 10.1016/j.tim.2011.11.002 PubMed DOI PMC
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66: 14–21. 10.1016/j.molimm.2014.10.023 PubMed DOI
Rosato PC, Beura LK, Masopust D. Tissue-resident memory T cells and viral immunity. Curr Opin Virol. 2017;22: 44–50. 10.1016/j.coviro.2016.11.011 PubMed DOI PMC
Rothkötter HJ. Anatomical particularities of the porcine immune system-A physician’s view. Dev Comp Immunol. 2009;33: 267–272. 10.1016/j.dci.2008.06.016 PubMed DOI
Marquet F, Vu Manh T-P, Maisonnasse P, Elhmouzi-Younes J, Urien C, Bouguyon E, et al. Pig skin includes dendritic cell subsets transcriptomically related to human CD1a and CD14 dendritic cells presenting different migrating behaviors and T cell activation capacities. J Immunol. 2014;193: 5883–5893. 10.4049/jimmunol.1303150 PubMed DOI
Gerdts V, Wilson HL, Meurens F, Van den Hurk S van DL, Wilson D, Walker S, et al. Large animal models for vaccine development and testing. ILAR J. 2015;56: 53–62. 10.1093/ilar/ilv009 PubMed DOI
Glenn GM, Kenney RT. Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol. 2006;304: 247–268. PubMed
Lambert PH, Laurent PE. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine. 2008;26: 3197–3208. 10.1016/j.vaccine.2008.03.095 PubMed DOI
Eblé PL, Weerdmeester K, van Hemert-Kluitenberg F, Dekker A. Intradermal vaccination of pigs against FMD with 1/10 dose results in comparable vaccine efficacy as intramuscular vaccination with a full dose. Vaccine. 2009;27: 1272–1278. 10.1016/j.vaccine.2008.12.011 PubMed DOI
Sticchi L, Alberti M, Alicino C, Crovari P. The intradermal vaccination: Past experiences and current perspectives. J Prev Med Hyg. 2010;51: 7–14. PubMed
Leroux-Roels G. Unmet needs in modern vaccinology. Adjuvants to improve the immune response. Vaccine. 2010;28: C25–36. 10.1016/j.vaccine.2010.07.021 PubMed DOI
Bernardy J, Nechvatalova K, Krejci J, Kudlackova H, Brazdova I, Kucerova Z, et al. Comparison of different doses of antigen for intradermal administration in pigs: The Actinobacillus pleuropneumoniae model. Vaccine. 2008;26: 6368–6372. 10.1016/j.vaccine.2008.09.027 PubMed DOI
Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4: 114 10.3389/fimmu.2013.00114 PubMed DOI PMC
Ciabattini A, Pettini E, Fiorino F, Pastore G, Andersen P, Pozzi G, et al. Modulation of primary immune response by different vaccine adjuvants. Front Immunol. 2016; 7: 427 10.3389/fimmu.2016.00427 PubMed DOI PMC
Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity. 2010;33: 464–478. 10.1016/j.immuni.2010.10.007 PubMed DOI PMC
Bergmann-Leitner E, Leitner W. Adjuvants in the driver’s seat: How magnitude, type, fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators. Vaccines. 2014;2: 252–296. 10.3390/vaccines2020252 PubMed DOI PMC
Krejci J, Nechvatalova K, Kudlackova H, Leva L, Bernardy J, Toman M, et al. Effects of adjuvants on the immune response of pigs after intradermal administration of antigen. Res Vet Sci. 2013;94: 73–76. 10.1016/j.rvsc.2012.07.021 PubMed DOI
Oreskovic Z, Kudlackova H, Krejci J, Nechvatalova K, Faldyna M. Oil-based adjuvants delivered intradermally induce high primary IgG2 immune response in swine. Res Vet Sci. 2017; 114: 41–43. 10.1016/j.rvsc.2017.03.007 PubMed DOI
Volf J, Stepanova H, Matiasovic J, Kyrova K, Sisak F, Havlickova H, et al. Salmonella enterica serovar Typhimurium and Enteritidis infection of pigs and cytokine signalling in palatine tonsils. Vet Microbiol. 2012;156: 127–135. 10.1016/j.vetmic.2011.10.004 PubMed DOI
Ondrackova P, Leva L, Kucerova Z, Vicenova M, Mensikova M, Faldyna M. Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental Actinobacillus pleuropneumoniae infection and the role of chemokines. Vet Res. 2013;44: 98 10.1186/1297-9716-44-98 PubMed DOI PMC
Künzi V, Klap JM, Seiberling MK, Herzog C, Hartmann K, Kürsteiner O, et al. Immunogenicity and safety of low dose virosomal adjuvanted influenza vaccine administered intradermally compared to intramuscular full dose administration. Vaccine. 2009;27: 3561–3567. 10.1016/j.vaccine.2009.03.062 PubMed DOI
Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001;19: 2666–2672. PubMed
Jiao X, Cheng S, Hu Y hua, Sun L. Comparative study of the effects of aluminum adjuvants and Freund’s incomplete adjuvant on the immune response to an Edwardsiella tarda major antigen. Vaccine. 2010;28: 1832–1837. 10.1016/j.vaccine.2009.11.083 PubMed DOI
HogenEsch H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine. 2002;20: S34–39. PubMed
McColl SR. Chemokines and dendritic cells: A crucial alliance. Immunol Cell Biol. 2002;80: 489–496. 10.1046/j.1440-1711.2002.01113.x PubMed DOI
Bashir MM, Sharma MR, Werth VP. TNF-α production in the skin. Arch Dermatol Res. 2009;301: 87–91. 10.1007/s00403-008-0893-7 PubMed DOI
Feldmeyer L, Werner S. French LE, Beera HD. Interleukin-1, inflammasomes and the skin. Eur J Cell Biol. 2010;89: 638–644. 10.1016/j.ejcb.2010.04.008 PubMed DOI
Kutsch CL, Norris DA AW. Tumor necrosis factor-alpha induces interleukin-1 alpha and interleukin-1 receptor antagonist production by cultured human keratinocytes. J Invest Dermatol. 1993;101: 79–85. PubMed
Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, Meisterfeld S, et al. Toll-like receptor-mediated upregulation of CXCL16 in psoriasis orchestrates neutrophil activation. J Invest Dermatol. 2017;138: 344–354. 10.1016/j.jid.2017.08.041 PubMed DOI
Latta M, Mohan K, Issekutz TB. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis. Immunology. 2007;121: 555–564. 10.1111/j.1365-2567.2007.02603.x PubMed DOI PMC
van der Voort R, Verweij V, de Witte TM, Lasonder E, Adema GJ, Dolstra H. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6(+) cells. J Leukoc Biol. 2010;87: 1029–1039. 10.1189/jlb.0709482 PubMed DOI PMC
Reid SD, Penna G, Adorini L. The control of T cell responses by dendritic cell subsets. Curr Opin Immunol. 2000;12: 114–121. PubMed
Clausen BE, Stoitzner P. Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front Immunol. 2015;6: 1–19. 10.3389/fimmu.2015.00001 PubMed DOI PMC
Hjortø GM, Larsen O, Steen A, Daugvilaite V, Berg C, Fares S, et al. Differential CCR7 targeting in dendritic cells by three naturally occurring CC-chemokines. Front Immunol. 2016;7: 568 10.3389/fimmu.2016.00568 PubMed DOI PMC
Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med. 1998;188: 2175–2180. PubMed PMC
Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-κB plays a major role in the maturation of human dendritic cells induced by NiSO4 but not by DNCB. Toxicol Sci. 2007;99:488–501. 10.1093/toxsci/kfm178 PubMed DOI
Foti M, Granucci F, Aggujaro D, Liboi E, Luini W, Minardi S, et al. Upon dendritic cells activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of dendritic cells at inflammatory site. Int Immunol. 1998;11: 979–986. PubMed
Lebre MC, Burwell T, Vieira PL, Lora J, Coyle AJ, Kapsenberg ML, et al. Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: A role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Immunol Cell Biol. 2005;83: 525–535. 10.1111/j.1440-1711.2005.01365.x PubMed DOI
Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol. 2000;1: 311–316. 10.1038/79758 PubMed DOI
Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med. 2001;194: 1541–1547. PubMed PMC
Vestergaard C, Deleuran M, Gesser B, Larsen CG. Thymus- and activation-regulated chemokine (TARC/CCL17) induces a Th2-dominated inflammatory reaction on intradermal injection in mice. Exp Dermatol. 2004;13: 265–271. 10.1111/j.0906-6705.2004.00149.x PubMed DOI
Wang J, Zhao Q, Wang G, Yang C, Xu Y, Li Y, et al. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis. Cytokine. 2016;81: 10–14. 10.1016/j.cyto.2016.01.012 PubMed DOI
Lambrecht BN, Kool M, Willart MA, Hammad H. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol. 2009;21: 23–29. 10.1016/j.coi.2009.01.004 PubMed DOI
Kool M, Soullié T, van Nimwegen M, Willart MAM, Muskens F, Jung S, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008;205: 869–882. 10.1084/jem.20071087 PubMed DOI PMC
Coffman RL, Sher A, Seder RA. Vaccine adjuvants: Putting innate immunity to work. Immunity. 2010;33: 492–503. 10.1016/j.immuni.2010.10.002 PubMed DOI PMC