Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 CA232017
NCI NIH HHS - United States
R01 MH103133
NIMH NIH HHS - United States
R21 GM126532
NIGMS NIH HHS - United States
PubMed
30802685
PubMed Central
PMC6467534
DOI
10.1016/j.biomaterials.2019.02.008
PII: S0142-9612(19)30087-0
Knihovny.cz E-zdroje
- Klíčová slova
- And cancer therapy, Bioimaging, Nanoparticles, Photo-targeting, Triplet-triplet annihilation upconversion,
- MeSH
- diagnostické zobrazování metody MeSH
- molekulární struktura MeSH
- nanočástice chemie MeSH
- oxid křemičitý chemie MeSH
- polymery chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- oxid křemičitý MeSH
- polymery MeSH
Organic triplet-triplet annihilation upconversion (TTA-UC) nanoparticles have emerged as exciting therapeutic agents and imaging probes in recent years due to their unique chemical and optical properties such as outstanding biocompatibility and low power excitation density. In this review, we focus on the latest breakthroughs in such new version of upconversion nanoparticle, including their design, preparation, and applications. First, we will discuss the key principles and design concept of these organic-based photon upconversion in regard to the methods of selection of the related triplet TTA dye pairs (photosensitizer and emitter). Then, we will discuss the recent approaches s to construct TTA-UCNPs including silica TTA-UCNPs, lipid-coated TTA-UCNPs, polymer encapsulated TTA-UCNPs, nano-droplet TTA-UCNPs and metal-organic frameworks (MOFs) constructed TTA-UCNPs. In addition, the applications of TTA-UCNPs will be discussed. Finally, we will discuss the challenges posed by current TTA-UCNP development.
Zobrazit více v PubMed
Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem. Rev 114 (2014) 5161–5214. PubMed PMC
Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications, Chem. Rev 115 (2015) 395–465. PubMed
Tu L, Liu X, Wu F, Zhang H. Excitation energy migration dynamics in upconversion nanomaterials, Chem. Soc. Rev 44 (2015) 1331–1345. PubMed
Chen G, Ågren H, Ohulchanskyy TY, Prasad PN. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications, Chem. Soc. Rev 44 (2015) 1680–1713. PubMed
Liu J, Bu W, Pan L, Shi J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica, Angew. Chem 125 (2013) 4471–4475; PubMed
Xing H, Bu W, Zhang S, Zheng X , Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging, Biomaterials 33 (2012) 1079–1089; PubMed
Liu Y, Meng X, Bu W, Upconversion-based photodynamic cancer therapy. Coordination Chemistry Reviews 379 (2019) 82–98.
Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging, Chem. Soc. Rev 41 (2012) 1323–1349. PubMed
Shikha S, Salafi T, Cheng J, Zhang Y. Versatile design and synthesis of nano-barcodes, Chem. Soc. Rev 46 (2017) 7054–7093; PubMed
Yang D, Ma P, Hou Z, Cheng Z, Li C , Lin J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev 44 (2015), 1416–1448; PubMed
Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev 114 (2014) 2343–2389. PubMed
Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D. Lanthanide nanoparticles: From design toward bioimaging and therapy, Chem. Rev 115 (2015) 10725–10815. PubMed
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy, Chem. Rev 116 (2016) 2826–2885. PubMed
Peng H-Q, Niu L-Y, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z. Biological applications of supramolecular assemblies designed for excitation energy transfer, Chem. Rev 115 (2015) 7502–7542. PubMed
Zhao J, Ji S, Guo H. Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields, RSC Adv 1 (2011) 937–950.
Zhao J, Wu W, Sun J, Guo S. Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev 42 (2013) 5323–5351. PubMed
Zhao J, Xu K, Yang W, Wang Z, Zhong F. The triplet excited state of Bodipy: formation, modulation and application, Chem. Soc. Rev 44 (2015) 8904–8939. PubMed
Zhu X, Su Q, Feng W, Li F. Anti-Stokes shift luminescent materials for bio-applications, Chem. Soc. Rev 46 (2017) 1025–1039. PubMed
Filatov MA, Baluschevb S, Landfester K. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen, Chem. Soc. Rev 45 (2016) 4668–4689. PubMed
Baluschev S, Katta K, Avlasevich Y, Landfester K. Annihilation upconversion in nanoconfinement: solving the oxygen quenching problem, Mater. Horiz 3 (2016) 478–486.
Vadrucci R, Weder C, Simon YC. Organogels for low-power light upconversion, Mater. Horiz 2 (2015) 120–124.
Ji S, Guo H, Wu W, Wu W, Zhao J. Ruthenium (II) polyimine-coumarin dyad with non-emissive 3IL excited state as sensitizer for triplet-triplet annihilation based upconversion, Angew. Chem. Int. Ed 50 (2011) 8283–8286. PubMed
Lu Y, Wang J, McGoldrick N, Cui X, Zhao J, Caverly C, et al., Iridium (III) complexes bearing pyrene-functionalized 1,10-phenanthroline ligands as highly efficient sensitizers for triplet-triplet annihilation upconversion, Angew. Chem. Int. Ed 55 (2016) 14688–14692. PubMed
Borisov SM, Saf R, Fischer R, Klimant I. Synthesis and properties of new phosphorescent red light-excitable platinum (II) and palladium (II) complexes with Schiff bases for oxygen sensing and triplet-triplet annihilation-based upconversion, Inorg. Chem 52 (2013) 1206–1216. PubMed
Yi X, Zhao J, Sun J, Guo S, Zhang H. Visible light-absorbing rhenium(I) tricarbonyl complexes as triplet photosensitizers in photooxidation and triplet-triplet annihilation upconversion, Dalton Trans 42 (2013) 2062–2074. PubMed
Han J, Duan P, Li X, Liu M. Amplification of circularly polarized luminescence through triplet-triplet annihilation-based photon upconversion, J. Am. Chem. Soc 139 (2017) 9783–9786. PubMed
Kim H-l, Kwon OS, Kim S, Choi W, Kim J-H. Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts, Energy Environ. Sci 9 (2016) 1063–1073.
Liu Q, Xu M, Yang T, Tian B, Zhang X, Li F. Highly photostable near-IR-excitation upconversion nanocapsules based on triplet-triplet annihilation for in vivo bioimaging application, ACS Appl. Mater. Interfaces, 10 (2018) 9883–9888. PubMed
Xu K, Zhao J, Escudero D, Mahmood Z, Jacquemin D. Controlling triplet–triplet annihilation upconversion by tuning the PET in aminomethyleneanthracene derivatives, J. Phys. Chem C, 119 (2015) 23801–23812.
Duan P, Yanai N, Nagatomi H, Kimizuka N. Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability, J. Am. Chem. Soc 137 (2015) 1887–1894. PubMed
Duan P, Yanai N, Kimizuka N. Photon upconverting liquids: matrix-free molecular upconversion systems functioning in air, J. Am. Chem. Soc 135 (2013) 19056–19059. PubMed
Singh-Rachford TN, Haefele A, Ziessel R, Castellano FN. Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes, J. Am. Chem. Soc 130 (2008) 16164–16165. PubMed
Wang C, Zhang Q, Wang X, Chang H, Zhang S, Tang Y et al.,. Dynamic modulation of enzyme activity by near-infrared light, Angew. Chem. Int. Ed 56 (2017) 6767–6772. PubMed
Jing T, Dai Y, Wei W, Ma X, Huang B. Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M = W, Mo), Phys. Chem. Chem. Phys 16 (2014) 18596–18604. PubMed
Wang Z, Zhao J, Barbon A, Toffoletti A, Liu Y, An Y, et al., Radical-enhanced intersystem crossing in new Bodipy derivatives and application for efficient triplet-triplet annihilation upconversion, J. Am. Chem. Soc 139 (2017) 7831–7842. PubMed
Wu W, Guo H, Wu W, Ji S, Zhao J. Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion, J. Org. Chem 76 (2011) 7056–7064. PubMed
Zhang C, Zhao J, Wu S, Wang Z, Wu W, Ma J, et al.,. Intramolecular RET enhanced visible light-absorbing bodipy organic triplet photosensitizers and application in photooxidation and triplet-triplet annihilation upconversion, J. Am. Chem. Soc 135 (2013) 10566–10578. PubMed
Hwang JY, Li Z, Loh XJ. Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications, RSC Adv 6 (2016) 70592–70615.
Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S,Veciana ac J., Ventosa N. Lipid-based nanovesicles for nanomedicine, Chem. Soc. Rev 45 (2016) 6520–6545. PubMed
Chen C, Zhu S, Huang T, Wang S, Yan X. Analytical techniques for single-liposome characterization, Anal. Methods, 5 (2013) 2150–2157.
Askes SHC, Bahreman A, Bonnet S. Activation of a photodissociative ruthenium complex by triplet-triplet annihilation upconversion in liposomes, Angew. Chem. Int. Ed 53 (2014) 1029–1033. PubMed
Gulzar A, Xu J, Yang P, He F, Xu L. Upconversion processes: versatile biological applications and biosafety, Nanoscale, 9 (2017) 12248–12282. PubMed
Wong H-T, Tsang M-K, Chan C-F, Wong K-L, Fei B, Hao J. In vitro cell imaging using multifunctional small sized KGdF4:Yb3+,Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process, Nanoscale, 5 (2013) 3465–3473. PubMed
Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy, J. Mater. Chem. B, 5 (2017) 4365–4392. PubMed
Mattiello S, Monguzzi A, Pedrini J, Sassi M, Villa C, Torrente Y, et al., Self-assembled dual dye−doped nanosized micelles for high−contrast up−conversion bioimaging, Adv. Funct. Mater 26 (2016) 8447–8454.
Kouno H, Ogawa T, Amemori S, Mahato P, Yanai N, Kimizuka N. Triplet energy migration-based photon upconversion by amphiphilic molecular assemblies in aerated water, Chem. Sci 7 (2016) 5224–5229. PubMed PMC
Poznik M, Faltermeier U, Dick B, König B. Light upconverting soft particles: triplet–triplet annihilation in the phospholipid bilayer of self-assembled vesicles, RSC Adv 6 (2016) 41947–41950.
Yildirim A, Chattaraj R, Blum NT, Goldscheitter GM, Goodwin AP. Stable encapsulation of air in mesoporous silica nanoparticles: fluorocarbon-free nanoscale ultrasound contrast agents, Adv. Healthcare Mater 5 (2016), 1290–1298. PubMed PMC
Niu D, Li Y, Shi J. Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chem. Soc. Rev 2017, 46 (2017) 569–585. PubMed
Ma X, Nguyen KT, Borah P, Ang CY, Zhao Y. Functional silica nanoparticles for redox-triggered drug/ssDNA co-delivery, Adv. Healthcare Mater 1 (2012) 690–697. PubMed
Huo Q, Liu J, Wang L-Q, Jiang Y, Lambert TN, Fang E. A new class of silica cross-linked micellar core-shell nanoparticles, J. Am. Chem. Soc 128 (2006) 6447–6453. PubMed
Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents, Chem. Soc. Rev 44 (2015) 4645–4671. PubMed
Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine, Chem. Soc. Rev 43 (2014) 4243–4268. PubMed
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, et al.,. Luminescent silica nanoparticles: extending the frontiers of brightness, Angew. Chem. Int. Ed 50 (2011) 4056–4066. PubMed
Liu Q, Yang T, Feng W, Li F. Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in Vivo, J. Am. Chem. Soc 134 (2012) 5390–5397. PubMed
Kwon OS, Kim J-H, Cho JK, Kim J-H. Triplet–triplet annihilation upconversion in CdS-Decorated SiO2 nanocapsules for sub-bandgap photocatalysis, ACS Appl. Mater. Interfaces 7 (2015) 318–325. PubMed
Kwon OS, Song HS, Conde J, Kim H.-l., Artzi N, Kim J-H. Dual-color emissive upconversion nanocapsules for differential cancer bioimaging In Vivo, ACS Nano 10 (2016) 1512–1521. PubMed
Trofymchuk K, Prodi L, Reisch A, Mély Y, Altenhöner K, Mattay J. Exploiting fast exciton diffusion in dye-doped polymer nanoparticles to engineer efficient photoswitching, J. Phys. Chem. Lett 6 (2015) 2259–2264. PubMed
Wu C, Zheng Y, Szymanski C, McNeill J. Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles, J. Phys. Chem C, 112 (2008) 1772–1781. PubMed PMC
Li S, Shen X, Li L, Yuan P, Guan Z, Yao SQ, et al.,. Conjugated-polymer-based red-emitting nanoparticles for two-photon excitation cell imaging with high contrast, Langmuir, 30 (2014) 7623–7627. PubMed
Jana B, Bhattacharyya S, Patra A. Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting, Nanoscale, 8 (2016), 16034–16043. PubMed
Dryza V, Smith TA, Bieske EJ. Blue to near-IR energy transfer cascade within a dye-doped polymer matrix, mediated by a photochromic molecular switch, Phys. Chem. Chem. Phys 18 (2016) 5095–5098. PubMed
Wu C, Chiu DT. Highly fluorescent semiconducting polymer dots for biology and medicine, Angew. Chem. Int. Ed 52 (2013) 3086–3109. PubMed PMC
Kim J-H, Kim J-H. Triple-emulsion microcapsules for highly efficient multispectral upconversion in the aqueous phase, ACS Photonics, 2 (2015) 633–638.
Wohnhaas C, Friedemann K, Busko D, Landfester K, Baluschev S, Crespy D. All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion, ACS Macro Lett 2 (2013) 446–450. PubMed
Kim J-H, Deng F, Castellano FN, Kim J-H. Red-to-Blue/Cyan/Green upconverting microcapsules for aqueous-and dry-phase color tuning and magnetic sorting, ACS Photonics, 1 (2014) 382–388.
Kang J-H, Lee SS, Guerrero J, Fernandez-Nieves A, Kim S-H, Reichmanis E. Ultrathin double−shell capsules for high performance photon upconversion, Adv. Mater 29 (2017) 1606830. PubMed
Kim J-H, Kim J-H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis, J. Am. Chem. Soc 134 (2012) 17478–17481. PubMed
Wohnhaas C, Mailänder V, Dröge M, Filatov MA, Busko D, Avlasevich Y. Triplet-triplet annihilation upconversion based nanocapsules for bioimaging under excitation by red and deep-red light, Macromol. Biosci 13 (2013) 1422–1430. PubMed
Askes SHC, Pomp W, Hopkins SL, Kros A, Wu S, Schmidt T, Bonnet S. Imaging upconverting polymersomes in cancer cells: biocompatible antioxidants brighten triplet-triplet annihilation upconversion, Small 12 (2016) 5579–5590. PubMed
Wang W, Liu Q, Zhan C, Barhoumi A, Yang T, Wylie RG et al.,. Efficient triplet–triplet annihilation-based upconversion for nanoparticle phototargeting, Nano Lett 15 (2015) 6332–6338. PubMed
Liu Q, Wang W, Zhan C, Yang T, Kohane DS. Enhanced precision of nanoparticle phototargeting in vivo at a safe irradiance, Nano Lett 16 (2016) 4516–4520. PubMed
Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P et al.,. A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation, J. Am. Chem. Soc 135 (2013) 5029–5037. PubMed
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M et al.,. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy, Chem. Rev 113 (2013), 119–191. PubMed PMC
Kammari L, Šolomek T, Ngoy BP, Heger D, Klán P. Orthogonal photocleavage of a monochromophoric linker, J. Am. Chem. Soc 132 (2010) 11431–11433. PubMed
Lin Q, Bao C, Cheng S, Yang Y, Ji W, Zhu L. Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein, J. Am. Chem. Soc 134 (2012) 5052–5055. PubMed
Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation, Angew. Chem. Int. Ed 56 (2017) 14400–14404. PubMed PMC
Chen W, Wu C. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans 47 (2018), 2114–2133; PubMed
Rojas S, Devic T, Horcajada P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B, 5 (2017) 2560–2573. PubMed
Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chem. Rev 112 (2012), 933–969. PubMed
Gagnon KJ, Perry HP, Clearfield A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs, Chem. Rev 112 (2012), 1034–1054. PubMed
Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM. Structures of metal–organic frameworks with rod secondary building units, Chem. Rev 116 (2016) 12466–12535. PubMed
Lee CY, Farha OK, Hong BJ, Sarjeant AA, Nguyen ST, Hupp JT. Light-harvesting metal– organic frameworks (MOFs): efficient strut-to-strut energy transfer in Bodipy and porphyrin-based MOFs, J. Am. Chem. Soc 133 (2011) 15858–15861. PubMed
Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ, Lin W. Energy transfer dynamics in metal−organic frameworks, J. Am. Chem. Soc 132 (2010) 12767–12769. PubMed
Ullman AM, Brown JW, Foster ME, Léonard F, Leong K, Stavila V, Allendorf MD. Transforming MOFs for energy applications using the guest@MOF concept. Inorg. Chem 55 (2016), 7233–7249. PubMed
Zhao X, Song X, Li Y, Chang Z, Chen L. Targeted construction of light-harvesting metal–organic frameworks featuring efficient host–guest energy transfer, ACS Appl. Mater. Interfaces, 10 (2018) 5633–5640. PubMed
Park KC, Seo C, Gupta G, Kim J, Le CY. Efficient energy transfer (EnT) in pyrene−and porphyrin-based mixed-ligand metal–organic frameworks, ACS Appl. Mater. Interfaces, 9 (2017) 38670–38677. PubMed
Park HJ, So MC, Gosztola D, Wiederrecht GP, Emery JD, Martinson ABF et al.,. Layer-by-layer assembled films of perylene diimide−and squaraine-containing metal–organic framework-like materials: Solar energy capture and directional energy transfer, ACS Appl. Mater. Interfaces, 8 (2016) 24983–24988. PubMed
Park J, Xu M, Li F, Zhou H-C. 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging, J. Am. Chem. Soc 140 (2018) 5493–5499. PubMed
Hosoyamada M, Yanai N, Okumura K, Uchihashi T, Kimizuka N. Translating MOF chemistry into supramolecular chemistry: soluble coordination nanofibers showing efficient photon upconversion, Chem. Commun 54 (2018) 6828–6831. PubMed