Exploring the Insecticidal Potential of Boldo (Peumus boldus) Essential Oil: Toxicity to Pests and Vectors and Non-target Impact on the Microcrustacean Daphnia magna

. 2019 Mar 01 ; 24 (5) : . [epub] 20190301

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30832296

Every year Chile exports about 2000 tons of boldo folium (Peumus boldus), which is used around the world as a traditional herbal medicinal product (THMP), mostly to relieve gastrointestinal disorders. This biomass may be a resource for the agrochemical industry to manufacture botanical insecticides. In this regard, the insecticidal potential of boldo has been poorly investigated. In the present work, hydrodistillation of a commercial boldo folium gave 1.5% (w/w) of a yellowish essential oil (boldo essential oil, BEO) containing 1,8-cineole (20.7%), p-cymene (18.5%), limonene (9.1%), ascaridole (9.1%) and β-phellandrene (6.4%) as the main constituents, as determined by gas chromatography-mass spectrometry (GC-MS). NMR analysis allowed us to determine that ascaridole was mainly represented by the cis-isomer. BEO was toxic to larvae of the filariasis vector Culex quinquefasciatus and adults of the housefly Musca domestica, showing LC50/LD50 values of 67.9 mg·L-1 and 98.5 µg·adult-1, respectively. On the other hand, lower insecticidal activity was observed against larvae of the moth pest Spodoptera littoralis (LD50 of 268.9 µg·larva-1). It is worth noting that, when tested at LC90 concentration, BEO was significantly less toxic to aquatic microcrustacean Daphnia magna than the conventional insecticide α-cypermethrin. Finally, in the attempt to explore the BEO mode of action, we tested it for acetylcholinesterase (AChE) inhibitory properties using the Ellman method, obtaining negligible effects (IC50 = 0.45 mg·mL-1). Taken together, these results gave new insights into the potential of BEO as a future ingredient of botanical insecticides.

Zobrazit více v PubMed

Vogel H., González B., Razmilic I. Boldo (Peumus boldus) cultivated under different light conditions, soil humidity and plantation density. Ind. Crops Prod. 2011;34:1310–1312. doi: 10.1016/j.indcrop.2010.10.039. DOI

Palma S., Luján C., Llabot J.M., Barboza G., Manzo R.H., Allemandi D.A. Design of Peumus boldus tablets by direct compression using a novel dry plant extract. Int. J. Pharm. 2002;233:191–198. doi: 10.1016/S0378-5173(01)00940-1. PubMed DOI

Leung A.Y., Foster S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics. 2nd ed. Wiley; New York, NY, USA: 1996.

MacDonald D., VanCrey K., Harrison P., Rangachari P.K., Rosenfeld J., Warren C., Sorger G. Ascaridole-less infusions of Chenopodium ambrosioides contain a nematocide (s) that is (are) not toxic to mammalian smooth muscle. J. Ethnopharmacol. 2004;92:215–221. doi: 10.1016/j.jep.2004.02.018. PubMed DOI

Lanhers M.C., Joyeux M., Soulimani R., Fleurentin J., Sayag M., Mot-tier F., Younos C., Pelt J.-M. Hepatoprotective and anti-inflammatory effects of a traditional medicinal plant of Chile, Peumus holdus. Planta Med. 1991;57:110–115. doi: 10.1055/s-2006-960043. PubMed DOI

Silano M., De Vincenzi M., De Vincenzi A., Silano V. The new European legislation on traditional herbal medicines: main features and perspectives. Fitoterapia. 2004;75:107–116. doi: 10.1016/j.fitote.2004.01.001. PubMed DOI

Girardi N.S., Passone M.A., García D., Nesci A., Etcheverry M. Microencapsulation of Peumus boldus essential oil and its impact on peanut seed quality preservation. Ind. Crops Prod. 2018;114:108–114. doi: 10.1016/j.indcrop.2018.01.036. DOI

Girardi N.S., García D., Robledo S.N., Passone M.A., Nesci A., Etcheverry M. Microencapsulation of Peumus boldus oil by complex coacervation to provide peanut seeds protection against fungal pathogens. Ind. Crops Prod. 2016;92:93–101. doi: 10.1016/j.indcrop.2016.07.045. DOI

Passone M.A., Etcheverry M. Antifungal impact of volatile fractions of Peumus boldus and Lippia turbinata on Aspergillus section Flavi and residual levels of these oils in irradiated peanut. Int. J. Food Microbiol. 2014;168:17–23. doi: 10.1016/j.ijfoodmicro.2013.10.009. PubMed DOI

Verdeguer M., García-Rellán D., Boira H., Pérez E., Gandolfo S., Blázquez M.A. Herbicidal activity of Peumus boldus and Drimys winterii essential oils from Chile. Molecules. 2011;16:403–411. doi: 10.3390/molecules16010403. PubMed DOI PMC

Blázquez M.A., Carbó E. Control of Portulaca oleracea by boldo and lemon essential oils in different soils. Ind. Crops Prod. 2015;76:515–521. doi: 10.1016/j.indcrop.2015.07.019. DOI

De Castro D.S.B., da Silva D.B., Tibúrcio J.D., Sobral M.E.G., Ferraz V., Taranto A.G., Serrão J.E., de Siqueira J.M., Alves S.N. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp. Parasitol. 2016;171:84–90. doi: 10.1016/j.exppara.2016.10.008. PubMed DOI

Betancur R.J., Silva A.G., Rodríguez J.M., Fischer G.S., Zapata S.M. Insecticidal activity of Peumus boldus Molina essential oil against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res. 2010;70:399–407.

Diana P., Gonzalo S., Maritza T., Rodríguez M., Angélica U., Inés F., Angel Lagunes T., Santillán-Ortega C., Robles-Bermúdez A., Aguilar-Medel S., et al. Essential oil from leaves of Peumus boldus Molina collected in autumn to control of maize weevil Sitophilus zeamais Motschulsky. Chil. J. Agric. Anim. Sci. 2014;30:171–180.

Pavela R., Maggi F., Iannarelli R., Benelli G. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop. 2019 doi: 10.1016/j.actatropica.2019.01.019. PubMed DOI

Benelli G., Pavela R. Repellence of essential oils and selected compounds against ticks—a systematic review. Acta Trop. 2018;179:47–54. doi: 10.1016/j.actatropica.2017.12.025. PubMed DOI

Liu W., Gan J., Schlenk D., Jury W.A. Enantioselectivity in environmental safety of current chiral insecticides. Proc. Natl. Acad. Sci. 2005;102:701–706. doi: 10.1073/pnas.0408847102. PubMed DOI PMC

Petigny L., Périno S., Minuti M., Visinoni F., Wajsman J., Chemat F. Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. Int. J. Mol. Sci. 2014;15:7183–7198. doi: 10.3390/ijms15057183. PubMed DOI PMC

Herrera-Rodríguez C., Ramírez-Mendoza C., Becerra-Morales I., Silva-Aguayo G., Urbina-Parra A., Figueroa-Cares I., Martínez-Bolaños L., Rodríguez-Maciel J.C., Lagunes-Tejeda A., Pastene-Navarrete E., et al. Bioactivity of Peumus boldus Molina, Laurelia sempervirens (Ruiz & Pav.) Tul. and Laureliopsis philippiana (Looser) Schodde (Monimiacea) essential oils against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res. 2015;75:334–340.

Gille L., Monzote L., Stamberg W., Staniek K. Toxicity of ascaridole from Chenopodium ambrosioides in mammalian mitochondria. BMC Pharmacol. 2010;10:A10. doi: 10.1186/1471-2210-10-S1-A10. PubMed DOI

Cavalli J.F., Tomi F., Bernardini A.F., Casanova J. Analysis of the EO of Chenopodium ambrosioides by GC, GC–MS and 13C-NMR spectroscopy: Quantitative determination of ascaridole, a heatsensitive compound. Phytochem. Anal. 2004;15:275–279. doi: 10.1002/pca.761. PubMed DOI

Pollack Y., Segal R., Golenser J. The effect of ascaridole on the in vitro development of Plasmodium falciparum. Parasitol. Res. 1990;76:570–572. doi: 10.1007/BF00932563. PubMed DOI

Chu S.S., Hu J.F., Liu Z.L. Composition of EO of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil, Sitophilus zeamais. Pest Manag. Sci. 2011;67:714–718. doi: 10.1002/ps.2112. PubMed DOI

Pavela R., Maggi F., Lupidi G., Mbuntcha H., Woguem V., Womeni H.M., Barboni L., Tapondjou L.A., Benelli G. Clausena anisata and Dysphania ambrosioides essential oils: From ethno-medicine to modern uses as effective insecticides. Environ. Sci. Pollut. Res. 2018;25:10493–10503. doi: 10.1007/s11356-017-0267-9. PubMed DOI

Dampc A., Luczkiewicz M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia. 2013;85:130–143. doi: 10.1016/j.fitote.2013.01.013. PubMed DOI

Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI

Opdyke D.L.J. Monographs on fragrance raw materials, Chenopodium oil. Food Cosmet. Toxicol. 1976;14:713–715. PubMed

Hassine D.B., Abderrabba M., Yvon Y., Lebrihi A., Mathieu F., Couderc F., Bouajila J. Chemical composition and in vitro evaluation of the antioxidant and anti- microbial activities of Eucalyptus gillii essential oil and extracts. Molecules. 2012;17:9540–9558. doi: 10.3390/molecules17089540. PubMed DOI PMC

Qnais E.Y., Abdulla F.A., Kaddumi E.G., Abdalla S.S. Antidiarrheal activity of Laurus nobilis L. leaf extract in rats. J. Med. Food. 2012;15:51–57. doi: 10.1089/jmf.2011.1707. PubMed DOI

Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI

Maggi F., Benelli G. Mosquito-borne Diseases. Springer; Cham, Switzerland: 2018. Essential oils from aromatic and medicinal plants as effective weapons against mosquito vectors of public health importance; pp. 69–129.

Isman M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crops Prod. 2017;110:10–14. doi: 10.1016/j.indcrop.2017.07.012. DOI

Isman M.B., Machial C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. In: Rai M., Carpinella M.C., editors. Naturally Occurring Bioactive Compounds. Elsevier B.V.; Amsterdam, the Netherlands: 2006. pp. 29–44. Chapter 2.

Koul O. CRC Press; Bota Racon, FL, USA: 2004. Insect Antifeedants.

Capone D.L., Van Leeuwen K., Taylor D.K., Jeffery D.W., Pardon K.H., Elsey G.M., Sefton M.A. Evolution and occurrence of 1,8-cineole (Eucalyptol) in Australian wine. J. Agric. Food Chem. 2011;59:953–959. doi: 10.1021/jf1038212. PubMed DOI

Benelli G., Pavela R., Zorzetto C., Sánchez-Mateo C.C., Santini G., Canale A., Maggi F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomologia Generalis. 2019 doi: 10.1127/entomologia/2018/0662. DOI

Venditti A., Bianco A., Muscolo C., Zorzetto C., Sánchez-Mateo C.C., Rabanal R.M., Quassinti L., Bramucci M., Damiano S., Iannarelli R., et al. Bioactive Secondary Metabolites from Schizogyne sericea (Asteraceae) Endemic to Canary Islands. Chem. Biodivers. 2016;13:826–836. doi: 10.1002/cbdv.201500222. PubMed DOI

Morshedloo M.R., Craker L.E., Salami A., Nazeri V., Sang H., Maggi F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017;111:119–128. doi: 10.1016/j.plaphy.2016.11.023. PubMed DOI

Esmaeili H., Karami A., Maggi F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean Prod. 2018;198:91–95. doi: 10.1016/j.jclepro.2018.07.029. DOI

Vitali L.A., Beghelli D., Nya P.C.B., Bistoni O., Cappellacci L., Damiano S., Lupidi G., Maggi F., Orsomando G., Papa F., et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016;9:775–786. doi: 10.1016/j.arabjc.2015.06.002. DOI

Pavela R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae) Ind. Crops Prod. 2009;30:311–315. doi: 10.1016/j.indcrop.2009.06.005. DOI

Pavela R., Benelli G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI

Isman M.B., Miresmailli S., Machial C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011;10:197–204. doi: 10.1007/s11101-010-9170-4. DOI

Urzua A., Santander R., Echeverría J., Villalobos C., Palacios S.M., Rossi Y. Insecticidal Properties of Peumus boldus Mol. Essential Oil on the House Fly, Musca domestica L. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2010;9:465–469.

López V., Cascella M., Benelli G., Maggi F., Gómez-Rincón C. Green drugs in the fight against Anisakis simplex—larvicidal activity and acetylcholinesterase inhibition of Origanum compactum essential oil. Parasitol. Res. 2018;117:861–867. doi: 10.1007/s00436-018-5764-3. PubMed DOI PMC

Pavela R., Maggi F., Lupidi G., Cianfaglione K., Dauvergne X., Bruno M., Benelli G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.) Ind. Crops Prod. 2017;109:603–610. doi: 10.1016/j.indcrop.2017.09.013. DOI

Benelli G., Pavela R., Lupidi G., Nabissi M., Petrelli R., Kamte S.L.N., Cappellacci L., Fiorini D., Sut S., Dall’Acqua S., et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018;25:10515–10525. doi: 10.1007/s11356-017-0635-5. PubMed DOI

Rattan R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010;29:913–920. doi: 10.1016/j.cropro.2010.05.008. DOI

Enan E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2001;130:325–337. doi: 10.1016/S1532-0456(01)00255-1. PubMed DOI

Benelli G., Pavela R., Petrelli R., Cappellacci L., Canale A., Senthil-Nathan Sengottayan, Maggi F. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crops Prod. 2018;124:236–243. doi: 10.1016/j.indcrop.2018.07.048. DOI

Benelli G., Pavela R., Petrelli R., Cappellacci L., Santini G., Fiorini D., Sut S., Dall’Acqua S., Canale A., Maggi F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crops Prod. 2018;122:308–315. doi: 10.1016/j.indcrop.2018.05.032. DOI

Quassinti L., Maggi F., Barboni L., Ricciutelli M., Cortese M., Papa F., Garulli C., Kalogris C., Vittori S., Bramucci M. Wild celery (Smyrnium olusatrum L.) oil and isofuranodiene induce apoptosis in human colon carcinoma cells. Fitoterapia. 2014;97:133–141. doi: 10.1016/j.fitote.2014.06.004. PubMed DOI

Adams R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corp.; CarolStream, IL, USA: 2007.

NIST 17 . National Institute of Standards and Technology; Gaithersburg, MD, USA: 2017. Mass Spectral Library (NIST/EPA/NIH)

FFNSC 2 . Shimadzu Corps; Kyoto, Japan: 2012. Flavors and Fragrances of Natural and Synthetic Compounds. MassSpectral Database.

Benelli G., Pavela R., Giordani C., Casettari L., Curzi G., Cappellacci L., Petrelli R., Maggi F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018;112:668–680. doi: 10.1016/j.indcrop.2017.12.062. DOI

Pavela R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014;60:247–258. doi: 10.1016/j.indcrop.2014.06.030. DOI

OECD–Organization for Economic Cooperation and Development . OECD 202; Paris, France: 2004. Guideline for testing of chemicals. Daphnia sp., acute immobilisation test.

Pavela R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia-Pacif. Entomol. 2014;17:287–293. doi: 10.1016/j.aspen.2014.02.001. DOI

Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. PubMed DOI

Finney D.J. Probit Analysis. Cambridge University; London, UK: 1971. pp. 68–78.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...