Exploring the Insecticidal Potential of Boldo (Peumus boldus) Essential Oil: Toxicity to Pests and Vectors and Non-target Impact on the Microcrustacean Daphnia magna
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30832296
PubMed Central
PMC6429277
DOI
10.3390/molecules24050879
PII: molecules24050879
Knihovny.cz E-zdroje
- Klíčová slova
- Culex quinquefasciatus, Musca domestica, aquatic ecotoxicology, ascaridole, insecticide,
- MeSH
- Culex účinky léků MeSH
- cyklohexeny chemie MeSH
- cymeny MeSH
- Daphnia účinky léků MeSH
- insekticidy chemie farmakologie MeSH
- komáří přenašeči účinky léků MeSH
- larva účinky léků MeSH
- LD50 MeSH
- lidé MeSH
- monoterpeny s cyklohexanovým kruhem MeSH
- monoterpeny chemie MeSH
- moucha domácí účinky léků MeSH
- můry účinky léků MeSH
- oleje prchavé chemie farmakologie MeSH
- peroxidy chemie MeSH
- Peumus chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- pyrethriny chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-cymene MeSH Prohlížeč
- ascaridole MeSH Prohlížeč
- beta-phellandrene MeSH Prohlížeč
- cyklohexeny MeSH
- cymeny MeSH
- cypermethrin MeSH Prohlížeč
- insekticidy MeSH
- monoterpeny s cyklohexanovým kruhem MeSH
- monoterpeny MeSH
- oleje prchavé MeSH
- peroxidy MeSH
- pyrethriny MeSH
Every year Chile exports about 2000 tons of boldo folium (Peumus boldus), which is used around the world as a traditional herbal medicinal product (THMP), mostly to relieve gastrointestinal disorders. This biomass may be a resource for the agrochemical industry to manufacture botanical insecticides. In this regard, the insecticidal potential of boldo has been poorly investigated. In the present work, hydrodistillation of a commercial boldo folium gave 1.5% (w/w) of a yellowish essential oil (boldo essential oil, BEO) containing 1,8-cineole (20.7%), p-cymene (18.5%), limonene (9.1%), ascaridole (9.1%) and β-phellandrene (6.4%) as the main constituents, as determined by gas chromatography-mass spectrometry (GC-MS). NMR analysis allowed us to determine that ascaridole was mainly represented by the cis-isomer. BEO was toxic to larvae of the filariasis vector Culex quinquefasciatus and adults of the housefly Musca domestica, showing LC50/LD50 values of 67.9 mg·L-1 and 98.5 µg·adult-1, respectively. On the other hand, lower insecticidal activity was observed against larvae of the moth pest Spodoptera littoralis (LD50 of 268.9 µg·larva-1). It is worth noting that, when tested at LC90 concentration, BEO was significantly less toxic to aquatic microcrustacean Daphnia magna than the conventional insecticide α-cypermethrin. Finally, in the attempt to explore the BEO mode of action, we tested it for acetylcholinesterase (AChE) inhibitory properties using the Ellman method, obtaining negligible effects (IC50 = 0.45 mg·mL-1). Taken together, these results gave new insights into the potential of BEO as a future ingredient of botanical insecticides.
Crop Research Institute Drnovska 507 161 06 Prague Czech Republic
School of Pharmacy University of Camerino Via S Agostino 1 62032 Camerino Italy
Zobrazit více v PubMed
Vogel H., González B., Razmilic I. Boldo (Peumus boldus) cultivated under different light conditions, soil humidity and plantation density. Ind. Crops Prod. 2011;34:1310–1312. doi: 10.1016/j.indcrop.2010.10.039. DOI
Palma S., Luján C., Llabot J.M., Barboza G., Manzo R.H., Allemandi D.A. Design of Peumus boldus tablets by direct compression using a novel dry plant extract. Int. J. Pharm. 2002;233:191–198. doi: 10.1016/S0378-5173(01)00940-1. PubMed DOI
Leung A.Y., Foster S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics. 2nd ed. Wiley; New York, NY, USA: 1996.
MacDonald D., VanCrey K., Harrison P., Rangachari P.K., Rosenfeld J., Warren C., Sorger G. Ascaridole-less infusions of Chenopodium ambrosioides contain a nematocide (s) that is (are) not toxic to mammalian smooth muscle. J. Ethnopharmacol. 2004;92:215–221. doi: 10.1016/j.jep.2004.02.018. PubMed DOI
Lanhers M.C., Joyeux M., Soulimani R., Fleurentin J., Sayag M., Mot-tier F., Younos C., Pelt J.-M. Hepatoprotective and anti-inflammatory effects of a traditional medicinal plant of Chile, Peumus holdus. Planta Med. 1991;57:110–115. doi: 10.1055/s-2006-960043. PubMed DOI
Silano M., De Vincenzi M., De Vincenzi A., Silano V. The new European legislation on traditional herbal medicines: main features and perspectives. Fitoterapia. 2004;75:107–116. doi: 10.1016/j.fitote.2004.01.001. PubMed DOI
Girardi N.S., Passone M.A., García D., Nesci A., Etcheverry M. Microencapsulation of Peumus boldus essential oil and its impact on peanut seed quality preservation. Ind. Crops Prod. 2018;114:108–114. doi: 10.1016/j.indcrop.2018.01.036. DOI
Girardi N.S., García D., Robledo S.N., Passone M.A., Nesci A., Etcheverry M. Microencapsulation of Peumus boldus oil by complex coacervation to provide peanut seeds protection against fungal pathogens. Ind. Crops Prod. 2016;92:93–101. doi: 10.1016/j.indcrop.2016.07.045. DOI
Passone M.A., Etcheverry M. Antifungal impact of volatile fractions of Peumus boldus and Lippia turbinata on Aspergillus section Flavi and residual levels of these oils in irradiated peanut. Int. J. Food Microbiol. 2014;168:17–23. doi: 10.1016/j.ijfoodmicro.2013.10.009. PubMed DOI
Verdeguer M., García-Rellán D., Boira H., Pérez E., Gandolfo S., Blázquez M.A. Herbicidal activity of Peumus boldus and Drimys winterii essential oils from Chile. Molecules. 2011;16:403–411. doi: 10.3390/molecules16010403. PubMed DOI PMC
Blázquez M.A., Carbó E. Control of Portulaca oleracea by boldo and lemon essential oils in different soils. Ind. Crops Prod. 2015;76:515–521. doi: 10.1016/j.indcrop.2015.07.019. DOI
De Castro D.S.B., da Silva D.B., Tibúrcio J.D., Sobral M.E.G., Ferraz V., Taranto A.G., Serrão J.E., de Siqueira J.M., Alves S.N. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp. Parasitol. 2016;171:84–90. doi: 10.1016/j.exppara.2016.10.008. PubMed DOI
Betancur R.J., Silva A.G., Rodríguez J.M., Fischer G.S., Zapata S.M. Insecticidal activity of Peumus boldus Molina essential oil against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res. 2010;70:399–407.
Diana P., Gonzalo S., Maritza T., Rodríguez M., Angélica U., Inés F., Angel Lagunes T., Santillán-Ortega C., Robles-Bermúdez A., Aguilar-Medel S., et al. Essential oil from leaves of Peumus boldus Molina collected in autumn to control of maize weevil Sitophilus zeamais Motschulsky. Chil. J. Agric. Anim. Sci. 2014;30:171–180.
Pavela R., Maggi F., Iannarelli R., Benelli G. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop. 2019 doi: 10.1016/j.actatropica.2019.01.019. PubMed DOI
Benelli G., Pavela R. Repellence of essential oils and selected compounds against ticks—a systematic review. Acta Trop. 2018;179:47–54. doi: 10.1016/j.actatropica.2017.12.025. PubMed DOI
Liu W., Gan J., Schlenk D., Jury W.A. Enantioselectivity in environmental safety of current chiral insecticides. Proc. Natl. Acad. Sci. 2005;102:701–706. doi: 10.1073/pnas.0408847102. PubMed DOI PMC
Petigny L., Périno S., Minuti M., Visinoni F., Wajsman J., Chemat F. Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. Int. J. Mol. Sci. 2014;15:7183–7198. doi: 10.3390/ijms15057183. PubMed DOI PMC
Herrera-Rodríguez C., Ramírez-Mendoza C., Becerra-Morales I., Silva-Aguayo G., Urbina-Parra A., Figueroa-Cares I., Martínez-Bolaños L., Rodríguez-Maciel J.C., Lagunes-Tejeda A., Pastene-Navarrete E., et al. Bioactivity of Peumus boldus Molina, Laurelia sempervirens (Ruiz & Pav.) Tul. and Laureliopsis philippiana (Looser) Schodde (Monimiacea) essential oils against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res. 2015;75:334–340.
Gille L., Monzote L., Stamberg W., Staniek K. Toxicity of ascaridole from Chenopodium ambrosioides in mammalian mitochondria. BMC Pharmacol. 2010;10:A10. doi: 10.1186/1471-2210-10-S1-A10. PubMed DOI
Cavalli J.F., Tomi F., Bernardini A.F., Casanova J. Analysis of the EO of Chenopodium ambrosioides by GC, GC–MS and 13C-NMR spectroscopy: Quantitative determination of ascaridole, a heatsensitive compound. Phytochem. Anal. 2004;15:275–279. doi: 10.1002/pca.761. PubMed DOI
Pollack Y., Segal R., Golenser J. The effect of ascaridole on the in vitro development of Plasmodium falciparum. Parasitol. Res. 1990;76:570–572. doi: 10.1007/BF00932563. PubMed DOI
Chu S.S., Hu J.F., Liu Z.L. Composition of EO of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil, Sitophilus zeamais. Pest Manag. Sci. 2011;67:714–718. doi: 10.1002/ps.2112. PubMed DOI
Pavela R., Maggi F., Lupidi G., Mbuntcha H., Woguem V., Womeni H.M., Barboni L., Tapondjou L.A., Benelli G. Clausena anisata and Dysphania ambrosioides essential oils: From ethno-medicine to modern uses as effective insecticides. Environ. Sci. Pollut. Res. 2018;25:10493–10503. doi: 10.1007/s11356-017-0267-9. PubMed DOI
Dampc A., Luczkiewicz M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia. 2013;85:130–143. doi: 10.1016/j.fitote.2013.01.013. PubMed DOI
Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI
Opdyke D.L.J. Monographs on fragrance raw materials, Chenopodium oil. Food Cosmet. Toxicol. 1976;14:713–715. PubMed
Hassine D.B., Abderrabba M., Yvon Y., Lebrihi A., Mathieu F., Couderc F., Bouajila J. Chemical composition and in vitro evaluation of the antioxidant and anti- microbial activities of Eucalyptus gillii essential oil and extracts. Molecules. 2012;17:9540–9558. doi: 10.3390/molecules17089540. PubMed DOI PMC
Qnais E.Y., Abdulla F.A., Kaddumi E.G., Abdalla S.S. Antidiarrheal activity of Laurus nobilis L. leaf extract in rats. J. Med. Food. 2012;15:51–57. doi: 10.1089/jmf.2011.1707. PubMed DOI
Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI
Maggi F., Benelli G. Mosquito-borne Diseases. Springer; Cham, Switzerland: 2018. Essential oils from aromatic and medicinal plants as effective weapons against mosquito vectors of public health importance; pp. 69–129.
Isman M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crops Prod. 2017;110:10–14. doi: 10.1016/j.indcrop.2017.07.012. DOI
Isman M.B., Machial C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. In: Rai M., Carpinella M.C., editors. Naturally Occurring Bioactive Compounds. Elsevier B.V.; Amsterdam, the Netherlands: 2006. pp. 29–44. Chapter 2.
Koul O. CRC Press; Bota Racon, FL, USA: 2004. Insect Antifeedants.
Capone D.L., Van Leeuwen K., Taylor D.K., Jeffery D.W., Pardon K.H., Elsey G.M., Sefton M.A. Evolution and occurrence of 1,8-cineole (Eucalyptol) in Australian wine. J. Agric. Food Chem. 2011;59:953–959. doi: 10.1021/jf1038212. PubMed DOI
Benelli G., Pavela R., Zorzetto C., Sánchez-Mateo C.C., Santini G., Canale A., Maggi F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomologia Generalis. 2019 doi: 10.1127/entomologia/2018/0662. DOI
Venditti A., Bianco A., Muscolo C., Zorzetto C., Sánchez-Mateo C.C., Rabanal R.M., Quassinti L., Bramucci M., Damiano S., Iannarelli R., et al. Bioactive Secondary Metabolites from Schizogyne sericea (Asteraceae) Endemic to Canary Islands. Chem. Biodivers. 2016;13:826–836. doi: 10.1002/cbdv.201500222. PubMed DOI
Morshedloo M.R., Craker L.E., Salami A., Nazeri V., Sang H., Maggi F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017;111:119–128. doi: 10.1016/j.plaphy.2016.11.023. PubMed DOI
Esmaeili H., Karami A., Maggi F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean Prod. 2018;198:91–95. doi: 10.1016/j.jclepro.2018.07.029. DOI
Vitali L.A., Beghelli D., Nya P.C.B., Bistoni O., Cappellacci L., Damiano S., Lupidi G., Maggi F., Orsomando G., Papa F., et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016;9:775–786. doi: 10.1016/j.arabjc.2015.06.002. DOI
Pavela R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae) Ind. Crops Prod. 2009;30:311–315. doi: 10.1016/j.indcrop.2009.06.005. DOI
Pavela R., Benelli G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Isman M.B., Miresmailli S., Machial C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011;10:197–204. doi: 10.1007/s11101-010-9170-4. DOI
Urzua A., Santander R., Echeverría J., Villalobos C., Palacios S.M., Rossi Y. Insecticidal Properties of Peumus boldus Mol. Essential Oil on the House Fly, Musca domestica L. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2010;9:465–469.
López V., Cascella M., Benelli G., Maggi F., Gómez-Rincón C. Green drugs in the fight against Anisakis simplex—larvicidal activity and acetylcholinesterase inhibition of Origanum compactum essential oil. Parasitol. Res. 2018;117:861–867. doi: 10.1007/s00436-018-5764-3. PubMed DOI PMC
Pavela R., Maggi F., Lupidi G., Cianfaglione K., Dauvergne X., Bruno M., Benelli G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.) Ind. Crops Prod. 2017;109:603–610. doi: 10.1016/j.indcrop.2017.09.013. DOI
Benelli G., Pavela R., Lupidi G., Nabissi M., Petrelli R., Kamte S.L.N., Cappellacci L., Fiorini D., Sut S., Dall’Acqua S., et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018;25:10515–10525. doi: 10.1007/s11356-017-0635-5. PubMed DOI
Rattan R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010;29:913–920. doi: 10.1016/j.cropro.2010.05.008. DOI
Enan E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2001;130:325–337. doi: 10.1016/S1532-0456(01)00255-1. PubMed DOI
Benelli G., Pavela R., Petrelli R., Cappellacci L., Canale A., Senthil-Nathan Sengottayan, Maggi F. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crops Prod. 2018;124:236–243. doi: 10.1016/j.indcrop.2018.07.048. DOI
Benelli G., Pavela R., Petrelli R., Cappellacci L., Santini G., Fiorini D., Sut S., Dall’Acqua S., Canale A., Maggi F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crops Prod. 2018;122:308–315. doi: 10.1016/j.indcrop.2018.05.032. DOI
Quassinti L., Maggi F., Barboni L., Ricciutelli M., Cortese M., Papa F., Garulli C., Kalogris C., Vittori S., Bramucci M. Wild celery (Smyrnium olusatrum L.) oil and isofuranodiene induce apoptosis in human colon carcinoma cells. Fitoterapia. 2014;97:133–141. doi: 10.1016/j.fitote.2014.06.004. PubMed DOI
Adams R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corp.; CarolStream, IL, USA: 2007.
NIST 17 . National Institute of Standards and Technology; Gaithersburg, MD, USA: 2017. Mass Spectral Library (NIST/EPA/NIH)
FFNSC 2 . Shimadzu Corps; Kyoto, Japan: 2012. Flavors and Fragrances of Natural and Synthetic Compounds. MassSpectral Database.
Benelli G., Pavela R., Giordani C., Casettari L., Curzi G., Cappellacci L., Petrelli R., Maggi F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018;112:668–680. doi: 10.1016/j.indcrop.2017.12.062. DOI
Pavela R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014;60:247–258. doi: 10.1016/j.indcrop.2014.06.030. DOI
OECD–Organization for Economic Cooperation and Development . OECD 202; Paris, France: 2004. Guideline for testing of chemicals. Daphnia sp., acute immobilisation test.
Pavela R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia-Pacif. Entomol. 2014;17:287–293. doi: 10.1016/j.aspen.2014.02.001. DOI
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. PubMed DOI
Finney D.J. Probit Analysis. Cambridge University; London, UK: 1971. pp. 68–78.