• This record comes from PubMed

MicroRNA-15b-5p Predicts Locoregional Relapse in Head and Neck Carcinoma Patients Treated With Intensity-modulated Radiotherapy

. 2019 Mar-Apr ; 16 (2) : 139-146.

Language English Country Greece Media print

Document type Journal Article

BACKGROUND/AIM: Head and neck cancers are a heterogenous group of epithelial tumors represented mainly by squamous cell carcinomas (HNSCC), which are the sixth most common type of cancer worldwide. Surgery together with radiotherapy (RT) is among the basic treatment modalities for most HNSCC patients. Various biomarkers aiming to predict patients' response to RT are currently investigated. The reason behind this effort is, on one hand, to distinguish radioresistant patients that show weak benefit from RT and, on the other hand, reduce the ionizing radiation dose in less aggressive radiosensitive HNSCC with possibly less acute or late toxicity. MATERIALS AND METHODS: A total of 94 HNSCC patients treated by definitive intensity-modulated radiotherapy were included in our retrospective study. We used a global expression analysis of microRNAs (miRNAs) in 43 tumor samples and validated a series of selected miRNAs in an independent set of 51 tumors. RESULTS: We identified miR-15b-5p to be differentially expressed between patients with short and long time of locoregional control (LRC). Kaplan-Meier analysis confirmed that HNSCC patients with higher expression of miR-15b-5p reach a significantly longer locoregional relapse-free survival compared to patients expressing low levels. Finally, multivariable Cox regression analysis revealed that miR-15b-5p is an independent predictive biomarker of LRC in HNSCC patients (HR=0.25; 95% CI=0.05-0.78; p<0.016). CONCLUSION: miR-15b-5p represents a potentially helpful biomarker for individualized treatment decisions concerning the management of HNSCC patients.

See more in PubMed

Klussmann JP. Head and neck cancer-new insights into a heterogeneous disease. Oncol Res Treat. 2017;40(6):318–319. PubMed

Ahmad P, Sana J, Slavik M, Slampa P, Smilek P, Slaby O. Micrornas involvement in radioresistance of head and neck cancer. Dis Markers. 2017;2017:8245345. PubMed PMC

Lo Nigro C, Denaro N, Merlotti A, Merlano M. Head and neck cancer: Improving outcomes with a multidisciplinary approach. Cancer Manag Res. 2017;9:363–371. PubMed PMC

Cohen ER, Reis IM, Gomez C, Pereira L, Freiser ME, Hoosien G, Franzmann EJ. Immunohistochemistry analysis of cd44, egfr, and p16 in oral cavity and oropharyngeal squamous cell carcinoma. Otolaryngol Head Neck Surg. 2017;157(2):239–251. PubMed

Bossi P, Resteghini C, Paielli N, Licitra L, Pilotti S, Perrone F. Prognostic and predictive value of egfr in head and neck squamous cell carcinoma. Oncotarget. 2016;7(45):74362–74379. PubMed PMC

Baschnagel AM, Tonlaar N, Eskandari M, Kumar T, Williams L, Hanna A, Pruetz BL, Wilson GD. Combined cd44, c-met, and egfr expression in p16-positive and p16-negative head and neck squamous cell carcinomas. J Oral Pathol Med. 2017;46(3):208–213. PubMed

Sethi N, Wright A, Wood H, Rabbitts P. Micrornas and head and neck cancer: Reviewing the first decade of research. Eur J Cancer. 2014;50(15):2619–2635. PubMed

Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, Jung K. Robust microrna stability in degraded rna preparations from human tissue and cell samples. Clin Chem. 2010;56(6):998–1006. PubMed

Gurin D, Slavik M, Hermanova M, Shatokhina T, Sana J, Kazda T, Selingerova I, Ahmad P, Smilek P, Horakova Z, Hendrych M, Slampa P, Slaby O. Prognostic impact of combined immunoprofiles in oropharyngeal squamous cell carcinoma patients with respect to ajcc 8th edition. J Oral Pathol Med. 2018;47(9):864–872. PubMed

Graboyes EM, Garrett-Mayer E, Ellis MA, Sharma AK, Wahlquist AE, Lentsch EJ, Nussenbaum B, Day TA. Effect of time to initiation of postoperative radiation therapy on survival in surgically managed head and neck cancer. Cancer. 2017;123(24):4841–4850. PubMed PMC

Chen L, Wen Y, Zhang J, Sun W, Lui VWY, Wei Y, Chen F, Wen W. Prediction of radiotherapy response with a 5-microrna signature-based nomogram in head and neck squamous cell carcinoma. Cancer Med. 2018;7(3):726–735. PubMed PMC

Courthod G, Franco P, Palermo L, Pisconti S, Numico G. The role of microrna in head and neck cancer: Current knowledge and perspectives. Molecules. 2014;19(5):5704–5716. PubMed PMC

John K, Wu J, Lee BW, Farah CS. Micrornas in head and neck cancer. Int J Dent. 2013;2013:650218. PubMed PMC

Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding rnas-an update. Nat Rev Clin Oncol. 2018;15(9):541–563. PubMed

Wang J, Chen J, Sen S. Microrna as biomarkers and diagnostics. J Cell Physiol. 2016;231(1):25–30. PubMed PMC

Leichter AL, Purcell RV, Sullivan MJ, Eccles MR, Chatterjee A. Multi-platform microrna profiling of hepatoblastoma patients using formalin fixed paraffin embedded archival samples. Gigascience. 2015;4:54. PubMed PMC

Edward DP, Alkatan H, Rafiq Q, Eberhart C, Al Mesfer S, Ghazi N, Al Safieh L, Kondkar AA, Abu Amero KK. Microrna profiling in intraocular medulloepitheliomas. PLoS One. 2015;10(3):e0121706. PubMed PMC

Lubov J, Maschietto M, Ibrahim I, Mlynarek A, Hier M, Kowalski LP, Alaoui-Jamali MA, da Silva SD. Meta-analysis of micrornas expression in head and neck cancer: Uncovering association with outcome and mechanisms. Oncotarget. 2017;8(33):55511–55524. PubMed PMC

Lu YC, Chen YJ, Wang HM, Tsai CY, Chen WH, Huang YC, Fan KH, Tsai CN, Huang SF, Kang CJ, Chang JT, Cheng AJ. Oncogenic function and early detection potential of mirna-10b in oral cancer as identified by microrna profiling. Cancer Prev Res (Phila) 2012;5(4):665–674. PubMed

Yang Y, Hou N, Wang X, Wang L, Chang S, He K, Zhao Z, Zhao X, Song T, Huang C. Mir-15b-5p induces endoplasmic reticulum stress and apoptosis in human hepatocellular carcinoma, both in vitro and in vivo, by suppressing rab1a. Oncotarget. 2015;6(18):16227–16238. PubMed PMC

Rissland OS, Hong SJ, Bartel DP. Microrna destabilization enables dynamic regulation of the mir-16 family in response to cell-cycle changes. Mol Cell. 2011;43(6):993–1004. PubMed PMC

Chung GE, Yoon JH, Myung SJ, Lee JH, Lee SH, Lee SM, Kim SJ, Hwang SY, Lee HS, Kim CY. High expression of microrna-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep. 2010;23(1):113–119. PubMed

Ji D, Zhan T, Li M, Yao Y, Jia J, Yi H, Qiao M, Xia J, Zhang Z, Ding H, Song C, Han Y, Gu J. Enhancement of sensitivity to chemo/radiation therapy by using mir-15b against dclk1 in colorectal cancer. Stem Cell Reports. 2018;11(6):1506–1522. PubMed PMC

Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C. The mir-15 family enhances the radiosensitivity of breast cancer cells by targeting g2 checkpoints. Radiat Res. 2015;183(2):196–207. PubMed

Polytarchou C, Iliopoulos D, Struhl K. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci USA. 2012;109(36):14470–14475. PubMed PMC

Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB. Ionizing radiation-induced oxidative stress alters mirna expression. PLoS One. 2009;4(7):e6377. PubMed PMC

Wang X, Guo H, Yao B, Helms J. Mir-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting trim14 in oral tongue squamous cell cancer. Oncol Rep. 2017;37(5):2720–2726. PubMed

Zhou XM, Sun R, Luo DH, Sun J, Zhang MY, Wang MH, Yang Y, Wang HY, Mai SJ. Upregulated trim29 promotes proliferation and metastasis of nasopharyngeal carcinoma via pten/akt/mtor signal pathway. Oncotarget. 2016;7(12):13634–13650. PubMed PMC

Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M, Zhang W, Chen W, Pan C, Liu Q, Song E, Li J. Mir-200b and mir-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting bmi1. Oncogene. 2012;31(4):432–445. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...