MicroRNAs Involvement in Radioresistance of Head and Neck Cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28325958
PubMed Central
PMC5343268
DOI
10.1155/2017/8245345
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- nádorové biomarkery genetika MeSH
- nádory hlavy a krku genetika patologie radioterapie MeSH
- spinocelulární karcinom genetika patologie radioterapie MeSH
- tolerance záření * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- nádorové biomarkery MeSH
Resistance to the ionizing radiation is a current problem in the treatment and clinical management of various cancers including head and neck cancer. There are several biological and molecular mechanisms described to be responsible for resistance of the tumors to radiotherapy. Among them, the main mechanisms include alterations in intracellular pathways involved in DNA damage and repair, apoptosis, proliferation, and angiogenesis. It has been found that regulation of these complex processes is often controlled by microRNAs. MicroRNAs are short endogenous RNA molecules that posttranscriptionally modulate gene expression and their deregulated expression has been observed in many tumors including head and neck cancer. Specific expression patterns of microRNAs have also been shown to predict prognosis and therapeutic response in head and neck cancer. Therefore, microRNAs present promising biomarkers and therapeutic targets that might overcome resistance to radiation and improve prognosis of head and neck cancer patients. In this review, we summarize the current knowledge of the functional role of microRNAs in radioresistance of cancer with special focus on head and neck cancer.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Radiation Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Janiszewska J., Szaumkessel M., Szyfter K. MicroRNAs are important players in head and neck carcinoma: a review. Critical Reviews in Oncology/Hematology. 2013;88(3):716–728. doi: 10.1016/j.critrevonc.2013.07.012. PubMed DOI
Cellini F., Morganti A. G., Genovesi D., Silvestris N., Valentini V. Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules. 2014;19(4):5379–5401. doi: 10.3390/molecules19045379. PubMed DOI PMC
Perri F., Pacelli R., Della Vittoria Scarpati G., et al. Radioresistance in head and neck squamous cell carcinoma: biological bases and therapeutic implications. Head and Neck. 2015;37(5):763–770. doi: 10.1002/hed.23837. PubMed DOI
Courthod G., Franco P., Palermo L., Pisconti S., Numico G. The role of microRNA in head and neck cancer: current knowledge and perspectives. Molecules. 2014;19(5):5704–5716. doi: 10.3390/molecules19055704. PubMed DOI PMC
Zhang T., Sun Q., Liu T., et al. MiR-451 increases radiosensitivity of nasopharyngeal carcinoma cells by targeting ras-related protein 14 (RAB14) Tumor Biology. 2014;35(12):12593–12599. doi: 10.1007/s13277-014-2581-x. PubMed DOI
Lynam-Lennon N., Reynolds J. V., Marignol L., Sheils O. M., Pidgeon G. P., Maher S. G. MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. Journal of Molecular Medicine. 2012;90(12):1449–1458. doi: 10.1007/s00109-012-0924-x. PubMed DOI
Liu C.-J., Tsai M.-M., Hung P.-S., et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Research. 2010;70(4):1635–1644. doi: 10.1158/0008-5472.CAN-09-2291. PubMed DOI
Liu N., Boohaker R. J., Jiang C., Boohaker J. R., Xu B. A radiosensitivity MiRNA signature validated by the TCGA database for head and neck squamous cell carcinomas. Oncotarget. 2015;6(33):34649–34657. doi: 10.18632/oncotarget.5299. PubMed DOI PMC
Suh Y.-E., Raulf N., Gäken J., et al. MicroRNA-196a promotes an oncogenic effect in head and neck cancer cells by suppressing annexin A1 and enhancing radioresistance. International Journal of Cancer. 2015;137(5):1021–1034. doi: 10.1002/ijc.29397. PubMed DOI
Gee H. E., Camps C., Buffa F. M., et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116(9):2148–2158. doi: 10.1002/cncr.25009. PubMed DOI
Li G., Qiu Y., Su Z., et al. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0084486.e84486 PubMed DOI PMC
Qu C., Liang Z., Huang J., et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–796. doi: 10.4161/cc.11.4.19228. PubMed DOI PMC
Li X.-H., Qu J.-Q., Yi H., et al. Integrated analysis of differential miRNA and mRNA expression profiles in human radioresistant and radiosensitive nasopharyngeal carcinoma cells. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0087767.e87767 PubMed DOI PMC
Xia H., Chen S., Chen K., Huang H., Ma H. MiR-96 promotes proliferation and chemo- or radioresistance by down-regulating RECK in esophageal cancer. Biomedicine and Pharmacotherapy. 2014;68(8):951–958. doi: 10.1016/j.biopha.2014.10.023. PubMed DOI
Maia D., de Carvalho A. C., Horst M. A., Carvalho A. L., Scapulatempo-Neto C., Vettore A. L. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. Journal of Translational Medicine. 2015;13, article 262 doi: 10.1186/s12967-015-0621-y. PubMed DOI PMC
Zhu H., Zhu X., Cheng G., Zhou M., Lou W. Downregulation of microRNA-21 enhances radiosensitivity in nasopharyngeal carcinoma. Experimental and Therapeutic Medicine. 2015;9(6):2185–2189. doi: 10.3892/etm.2015.2403. PubMed DOI PMC
Huang S., Li X.-Q., Chen X., Che S.-M., Chen W., Zhang X.-Z. Inhibition of microRNA-21 increases radiosensitivity of esophageal cancer cells through phosphatase and tensin homolog deleted on chromosome 10 activation. Diseases of the Esophagus. 2013;26(8):823–831. doi: 10.1111/j.1442-2050.2012.01389.x. PubMed DOI
Su H., Jin X., Zhang X., et al. Identification of microRNAs involved in the radioresistance of esophageal cancer cells. Cell Biology International. 2014;38(3):318–325. doi: 10.1002/cbin.10202. PubMed DOI
Xu L., Chen Z., Xue F., et al. MicroRNA-24 inhibits growth, induces apoptosis, and reverses radioresistance in laryngeal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Cancer Cell International. 2015;15, article 61 doi: 10.1186/s12935-015-0217-x. PubMed DOI PMC
Wang S., Zhang R., Claret F. X., Yang H. Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Molecular Cancer Therapeutics. 2014;13(12):3163–3174. doi: 10.1158/1535-7163.MCT-14-0317. PubMed DOI PMC
Li G., Liu Y., Su Z., et al. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. European Journal of Cancer. 2013;49(11):2596–2607. doi: 10.1016/j.ejca.2013.03.001. PubMed DOI
Long Z., Wang B., Tao D., Huang Y., Tao Z. Hypofractionated radiotherapy induces miR-34a expression and enhances apoptosis in human nasopharyngeal carcinoma cells. International Journal of Molecular Medicine. 2014;34(5):1388–1394. doi: 10.3892/ijmm.2014.1937. PubMed DOI
Li G., Wang Y., Liu Y., et al. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Science. 2014;105(12):1560–1568. doi: 10.1111/cas.12555. PubMed DOI PMC
Zhou S., Ye W., Ren J., et al. MicroRNA-381 increases radiosensitivity in esophageal squamous cell carcinoma. American Journal of Cancer Research. 2015;5:267–277. PubMed PMC
Shiiba M., Shinozuka K., Saito K., et al. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. British Journal of Cancer. 2013;108(9):1817–1821. doi: 10.1038/bjc.2013.175. PubMed DOI PMC
Wu S.-Y., Lin K.-C., Chiou J.-F., et al. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells. Strahlentherapie und Onkologie. 2013;189(8):675–683. doi: 10.1007/s00066-013-0347-9. PubMed DOI
de Jong M. C., Ten Hoeve J. J., Grénman R., et al. Pretreatment microRNA expression impacting on epithelial-to-mesenchymal transition predicts intrinsic radiosensitivity in head and neck cancer cell lines and patients. Clinical Cancer Research. 2015;21(24):5630–5638. doi: 10.1158/1078-0432.ccr-15-0454. PubMed DOI
Qu J.-Q., Yi H.-M., Ye X., et al. MiRNA-203 reduces nasopharyngeal carcinoma radioresistance by targeting IL8/AKT signaling. Molecular Cancer Therapeutics. 2015;14(11):2653–2664. doi: 10.1158/1535-7163.MCT-15-0461. PubMed DOI
Metheetrairut C., Slack F. J. MicroRNAs in the ionizing radiation response and in radiotherapy. Current Opinion in Genetics and Development. 2013;23(1):12–19. doi: 10.1016/j.gde.2013.01.002. PubMed DOI PMC
Ganci F., Sacconi A., Manciocco V., et al. Contemporary Issues in Head and Neck Cancer Management. InTech; 2015. Radioresistance in head and neck squamous cell carcinoma—possible molecular markers for local recurrence and new putative therapeutic strategies.
Korpela E., Vesprini D., Liu S. K. MicroRNA in radiotherapy: miRage or miRador? British Journal of Cancer. 2015;112(5):777–782. doi: 10.1038/bjc.2015.6. PubMed DOI PMC
Zimmermann M., Zouhair A., Azria D., Ozsahin M. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiation Oncology. 2006;1(1, article 11) doi: 10.1186/1748-717x-1-11. PubMed DOI PMC
Olivier M., Hollstein M., Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology. 2010;2(1) doi: 10.1101/cshperspect.a001008.a001008 PubMed DOI PMC
Gross A. M., Orosco R. K., Shen J. P., et al. Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nature Genetics. 2014;46(9):939–943. doi: 10.1038/ng.3051. PubMed DOI PMC
Peltonen J. K., Vähäkangas K. H., Helppi H. M., Bloigu R., Pääkkö P., Turpeenniemi-Hujanen T. Specific TP53 mutations predict aggressive phenotype in head and neck squamous cell carcinoma: a retrospective archival study. Head and Neck Oncology. 2011;3(1, article 20) doi: 10.1186/1758-3284-3-20. PubMed DOI PMC
Poeta M. L., Manola J., Goldwasser M. A., et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. The New England Journal of Medicine. 2007;357(25):2552–2561. doi: 10.1056/nejmoa073770. PubMed DOI PMC
Skinner H. D., Sandulache V. C., Ow T. J., et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clinical Cancer Research. 2012;18(1):290–300. doi: 10.1158/1078-0432.CCR-11-2260. PubMed DOI PMC
Patan S. Vasculogenesis and angiogenesis. Cancer Treatment and Research. 2004;117:3–32. doi: 10.1007/978-1-4419-8871-3_1. PubMed DOI
Barker H. E., Paget J. T. E., Khan A. A., Harrington K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Reviews Cancer. 2015;15(7):409–425. doi: 10.1038/nrc3958. PubMed DOI PMC
Meijer T. W. H., Kaanders J. H. A. M., Span P. N., Bussink J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical Cancer Research. 2012;18(20):5585–5594. doi: 10.1158/1078-0432.CCR-12-0858. PubMed DOI
Brown J. M. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. The British journal of radiology. 2014;87(1035) doi: 10.1259/bjr.20130686. PubMed DOI PMC
Cross M. J., Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences. 2001;22(4):201–207. doi: 10.1016/s0165-6147(00)01676-x. PubMed DOI
Kalluri R., Neilson E. G. Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation. 2003;112(12):1776–1784. doi: 10.1172/jci200320530. PubMed DOI PMC
Kalluri R., Weinberg R. A. The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation. 2009;119(6):1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Chang L., Graham P. H., Hao J., et al. Acquisition of epithelialmesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death and Disease. 2013;4(10, article e875) doi: 10.1038/cddis.2013.407. PubMed DOI PMC
Zhou Y.-C., Liu J.-Y., Li J., et al. Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. International Journal of Radiation Oncology Biology Physics. 2011;81(5):1530–1537. doi: 10.1016/j.ijrobp.2011.06.1956. PubMed DOI
Mani S. A., Guo W., Liao M.-J., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–715. doi: 10.1016/j.cell.2008.03.027. PubMed DOI PMC
Kreso A., Dick J. E. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–291. doi: 10.1016/j.stem.2014.02.006. PubMed DOI
Kleinová R., Slabý O., Šáňa J. The relevance of microRNAs in glioblastoma stem cells. Klinicka onkologie. 2015;28(5):338–344. doi: 10.14735/amko2015338. PubMed DOI
Krishnamurthy S., Nör J. E. Head and neck cancer stem cells. Journal of Dental Research. 2012;91(4):334–340. doi: 10.1177/0022034511423393. PubMed DOI PMC
Han J., Fujisawa T., Husain S. R., Puri R. K. Identification and characterization of cancer stem cells in human head and neck squamous cell carcinoma. BMC Cancer. 2014;14(1, article 173) doi: 10.1186/1471-2407-14-173. PubMed DOI PMC
Koukourakis M. I., Giatromanolaki A., Tsakmaki V., Danielidis V., Sivridis E. Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head-neck cancer. British Journal of Cancer. 2012;106(5):846–853. doi: 10.1038/bjc.2012.33. PubMed DOI PMC
Besse A., Sana J., Fadrus P., Slaby O. MicroRNAs involved in chemo- and radioresistance of high-grade gliomas. Tumor Biology. 2013;34(4):1969–1978. doi: 10.1007/s13277-013-0772-5. PubMed DOI
Zhao L., Bode A. M., Cao Y., Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis. 2012;33(11):2220–2227. doi: 10.1093/carcin/bgs235. PubMed DOI PMC
Gwak H.-S., Kim T. H., Jo G. H., et al. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS ONE. 2012;7(10) doi: 10.1371/journal.pone.0047449.e47449 PubMed DOI PMC
Zhang J., Zhang C., Hu L., et al. Abnormal expression of miR-21 and miR-95 in cancer stem-like cells is associated with radioresistance of lung cancer. Cancer Investigation. 2015;33(5):165–171. doi: 10.3109/07357907.2015.1019676. PubMed DOI
Liu S., Song L., Zhang L., Zeng S., Gao F. MiR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1. Biochemical and Biophysical Research Communications. 2015;459(4):679–685. doi: 10.1016/j.bbrc.2015.03.004. PubMed DOI
Li W., Guo F., Wang P., Hong S., Zhang C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Current Molecular Medicine. 2014;14(1):185–195. doi: 10.2174/1566524013666131203103147. PubMed DOI
Chun-Zhi Z., Lei H., An-Ling Z., et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10, article 367 doi: 10.1186/1471-2407-10-367. PubMed DOI PMC
Zhang Y., Zheng L., Ding Y., et al. MIR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics. 2015;92(5):1132–1140. doi: 10.1016/j.ijrobp.2015.04.007. PubMed DOI
Yang W., Sun T., Cao J., Liu F., Tian Y., Zhu W. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Experimental Cell Research. 2012;318(8):944–954. doi: 10.1016/j.yexcr.2012.02.010. PubMed DOI
Sun Y., Xing X., Liu Q., et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells. International Journal of Oncology. 2015;46(2):750–756. doi: 10.3892/ijo.2014.2745. PubMed DOI
Crosby M. E., Kulshreshtha R., Ivan M., Glazer P. M. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research. 2009;69(3):1221–1229. doi: 10.1158/0008-5472.CAN-08-2516. PubMed DOI PMC
Sun Q., Liu T., Yuan Y., et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. International Journal of Cancer. 2015;136(5):1003–1012. doi: 10.1002/ijc.29065. PubMed DOI
Gasparini P., Lovat F., Fassan M., et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(12):4536–4541. doi: 10.1073/pnas.1402604111. PubMed DOI PMC
Zhang P., Wang L., Rodriguez-Aguayo C., et al. MiR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nature Communications. 2014;5, article 5671 doi: 10.1038/ncomms6671. PubMed DOI PMC
Ye L., Yu G., Wang C., et al. MicroRNA-128a, BMI1 polycomb ring finger oncogene, and reactive oxygen species inhibit the growth of U-87 MG glioblastoma cells following exposure to X-ray radiation. Molecular Medicine Reports. 2015;12(4):6247–6254. doi: 10.3892/mmr.2015.4175. PubMed DOI
Xiao S., Yang Z., Lv R., et al. miR-135b contributes to the radioresistance by targeting GSK3β in human glioblastoma multiforme cells. PLoS ONE. 2014;9(9) doi: 10.1371/journal.pone.0108810.e108810 PubMed DOI PMC
Moskwa P., Zinn P. O., Choi Y. E., et al. A functional screen identifies miRs that induce radioresistance in glioblastomas. Molecular Cancer Research. 2014;12(12):1767–1778. doi: 10.1158/1541-7786.MCR-14-0268. PubMed DOI PMC
Besse A., Sana J., Lakomy R., et al. MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response. Tumor Biology. 2016;37(6):7719–7727. doi: 10.1007/s13277-015-4654-x. PubMed DOI
Li Y., Han W., Ni T.-T., et al. Knockdown of microRNA-1323 restores sensitivity to radiation by suppression of PRKDC activity in radiation-resistant lung cancer cells. Oncology Reports. 2015;33(6):2821–2828. doi: 10.3892/or.2015.3884. PubMed DOI
Zhang H.-H., Pang M., Dong W., et al. MiR-511 induces the apoptosis of radioresistant lung adenocarcinoma cells by triggering BAX. Oncology Reports. 2014;31(3):1473–1479. doi: 10.3892/or.2014.2973. PubMed DOI
Shen Z., Wu X., Wang Z., Li B., Zhu X. Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. International Journal of Clinical and Experimental Pathology. 2015;8(1):643–648. PubMed PMC
Yang X.-D., Xu X.-H., Zhang S.-Y., et al. Role of miR-100 in the radioresistance of colorectal cancer cells. American Journal of Cancer Research. 2015;5:545–559. PubMed PMC
Zhang Y., Zheng L., Huang J., et al. MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS ONE. 2014;9(4) doi: 10.1371/journal.pone.0093917.e93917 PubMed DOI PMC