Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.)
Language English Country Netherlands Media print-electronic
Document type Journal Article
Grant support
2/0058/16
VEGA
DP120100900
Australian Research Council
PubMed
30868545
DOI
10.1007/s11103-019-00852-8
PII: 10.1007/s11103-019-00852-8
Knihovny.cz E-resources
- Keywords
- Bioinformatics, GH16 family, Homo- and hetero-transglycosylation, Protein molecular modelling, Site-directed mutagenesis,
- MeSH
- Phylogeny MeSH
- Glycosylation MeSH
- Glycosyltransferases chemistry metabolism MeSH
- Germination MeSH
- DNA, Complementary genetics MeSH
- Models, Molecular MeSH
- Petroselinum enzymology MeSH
- Protein Engineering * MeSH
- Plant Proteins chemistry metabolism MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Seeds enzymology MeSH
- Structural Homology, Protein MeSH
- Substrate Specificity MeSH
- Tropaeolum enzymology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycosyltransferases MeSH
- DNA, Complementary MeSH
- Plant Proteins MeSH
- xyloglucan endotransglycosylase MeSH Browser
The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.
Institute of Analytical Chemistry Czech Academy of Sciences v v i Veveří 60200 Brno Czech Republic
School of Life Sciences Huaiyin Normal University Huai'an 223300 China
See more in PubMed
Trends Plant Sci. 1999 May;4(5):176-183 PubMed
Plant J. 1999 May;18(4):371-82 PubMed
Trends Plant Sci. 1999 Sep;4(9):361-6 PubMed
Eur J Biochem. 1999 Oct 1;265(1):394-403 PubMed
Plant Cell. 2000 Jul;12(7):1229-37 PubMed
Biochem J. 2001 May 1;355(Pt 3):671-9 PubMed
Plant J. 2001 Apr;26(1):23-34 PubMed
Gen Physiol Biophys. 2000 Dec;19(4):427-40 PubMed
Plant Physiol. 2001 Nov;127(3):1180-92 PubMed
Plant Physiol. 1993 Dec;103(4):1399-1406 PubMed
Planta. 2002 Oct;215(6):989-96 PubMed
Plant Cell. 2002 Dec;14(12):3073-88 PubMed
Plant Cell Physiol. 2002 Dec;43(12):1421-35 PubMed
Biochimie. 2003 Mar-Apr;85(3-4):413-22 PubMed
J Biol Chem. 1992 Oct 15;267(29):21058-64 PubMed
Arch Biochem Biophys. 1992 Nov 1;298(2):365-70 PubMed
Plant Cell. 2004 Apr;16(4):874-86 PubMed
Plant J. 2004 Apr;38(1):27-37 PubMed
Biochem J. 1992 Mar 15;282 ( Pt 3):821-8 PubMed
Carbohydr Res. 2006 Apr 10;341(5):577-81 PubMed
Planta. 2006 Oct;224(5):1091-102 PubMed
Plant Physiol Biochem. 2006 Nov-Dec;44(11-12):707-13 PubMed
Plant Biotechnol J. 2006 Mar;4(2):145-67 PubMed
J Biol Chem. 2007 Apr 27;282(17):12951-62 PubMed
Plant Cell Physiol. 2007 Jun;48(6):843-55 PubMed
Plant Cell. 2007 Jun;19(6):1947-63 PubMed
Anal Biochem. 2008 Apr 15;375(2):232-6 PubMed
Plant J. 2008 Jul;55(2):240-52 PubMed
Proteins. 2009 Jun;75(4):820-36 PubMed
FEBS J. 2009 Jan;276(2):437-56 PubMed
Ann Bot. 2009 Aug;104(2):197-204 PubMed
Biochem J. 1991 Oct 15;279 ( Pt 2):529-35 PubMed
Plant Physiol. 2009 Dec;151(4):1741-50 PubMed
Glycoconj J. 2010 Jan;27(1):79-87 PubMed
Plant Physiol Biochem. 2010 Apr;48(4):207-15 PubMed
Plant Physiol. 2011 Jan;155(1):399-413 PubMed
Nat Methods. 2011 Sep 29;8(10):785-6 PubMed
Mol Syst Biol. 2011 Oct 11;7:539 PubMed
Planta. 2013 Jan;237(1):173-87 PubMed
New Phytol. 2013 Jan;197(1):111-22 PubMed
Plant Cell. 2012 Nov;24(11):4511-24 PubMed
J Plant Physiol. 2013 Sep 1;170(13):1194-201 PubMed
Carbohydr Res. 1990 Apr 25;200:9-31 PubMed
Biochem J. 2013 Nov 1;455(3):307-18 PubMed
Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998-9002 PubMed
Curr Opin Plant Biol. 2014 Dec;22:122-131 PubMed
Plant Cell Physiol. 2015 Feb;56(2):180-94 PubMed
Plant J. 2015 Sep;83(5):753-69 PubMed
Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed
Plant J. 2017 Feb;89(4):651-670 PubMed
Biochem J. 2017 Mar 8;474(7):1055-1070 PubMed
Sci Rep. 2017 Apr 26;7:46099 PubMed
Chembiochem. 2018 Apr 16;19(8):793-798 PubMed
Acta Crystallogr D Struct Biol. 2018 May 1;74(Pt 5):463-470 PubMed
Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Carbohydr Res. 1993 Oct 4;248:285-301 PubMed
J Mol Biol. 1993 Dec 5;234(3):779-815 PubMed
Plant J. 1993 May;3(5):691-700 PubMed
Plant J. 1993 May;3(5):701-11 PubMed
Plant J. 1993 Jan;3(1):1-30 PubMed
Planta. 1996;200(2):221-8 PubMed
Plant Physiol. 1997 May;114(1):9-13 PubMed
Planta. 1998 Feb;204(2):242-51 PubMed
Nucleic Acids Res. 1998 Apr 1;26(7):1628-35 PubMed
Biochem J. 1997 Nov 1;327 ( Pt 3):699-708 PubMed