• This record comes from PubMed

Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.)

. 2019 May ; 100 (1-2) : 181-197. [epub] 20190313

Language English Country Netherlands Media print-electronic

Document type Journal Article

Grant support
2/0058/16 VEGA
DP120100900 Australian Research Council

Links

PubMed 30868545
DOI 10.1007/s11103-019-00852-8
PII: 10.1007/s11103-019-00852-8
Knihovny.cz E-resources

The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.

See more in PubMed

Trends Plant Sci. 1999 May;4(5):176-183 PubMed

Plant J. 1999 May;18(4):371-82 PubMed

Trends Plant Sci. 1999 Sep;4(9):361-6 PubMed

Eur J Biochem. 1999 Oct 1;265(1):394-403 PubMed

Plant Cell. 2000 Jul;12(7):1229-37 PubMed

Biochem J. 2001 May 1;355(Pt 3):671-9 PubMed

Plant J. 2001 Apr;26(1):23-34 PubMed

Gen Physiol Biophys. 2000 Dec;19(4):427-40 PubMed

Plant Physiol. 2001 Nov;127(3):1180-92 PubMed

Plant Physiol. 1993 Dec;103(4):1399-1406 PubMed

Planta. 2002 Oct;215(6):989-96 PubMed

Plant Cell. 2002 Dec;14(12):3073-88 PubMed

Plant Cell Physiol. 2002 Dec;43(12):1421-35 PubMed

Biochimie. 2003 Mar-Apr;85(3-4):413-22 PubMed

J Biol Chem. 1992 Oct 15;267(29):21058-64 PubMed

Arch Biochem Biophys. 1992 Nov 1;298(2):365-70 PubMed

Plant Cell. 2004 Apr;16(4):874-86 PubMed

Plant J. 2004 Apr;38(1):27-37 PubMed

Biochem J. 1992 Mar 15;282 ( Pt 3):821-8 PubMed

Carbohydr Res. 2006 Apr 10;341(5):577-81 PubMed

Planta. 2006 Oct;224(5):1091-102 PubMed

Plant Physiol Biochem. 2006 Nov-Dec;44(11-12):707-13 PubMed

Plant Biotechnol J. 2006 Mar;4(2):145-67 PubMed

J Biol Chem. 2007 Apr 27;282(17):12951-62 PubMed

Plant Cell Physiol. 2007 Jun;48(6):843-55 PubMed

Plant Cell. 2007 Jun;19(6):1947-63 PubMed

Anal Biochem. 2008 Apr 15;375(2):232-6 PubMed

Plant J. 2008 Jul;55(2):240-52 PubMed

Proteins. 2009 Jun;75(4):820-36 PubMed

FEBS J. 2009 Jan;276(2):437-56 PubMed

Ann Bot. 2009 Aug;104(2):197-204 PubMed

Biochem J. 1991 Oct 15;279 ( Pt 2):529-35 PubMed

Plant Physiol. 2009 Dec;151(4):1741-50 PubMed

Glycoconj J. 2010 Jan;27(1):79-87 PubMed

Plant Physiol Biochem. 2010 Apr;48(4):207-15 PubMed

Plant Physiol. 2011 Jan;155(1):399-413 PubMed

Nat Methods. 2011 Sep 29;8(10):785-6 PubMed

Mol Syst Biol. 2011 Oct 11;7:539 PubMed

Planta. 2013 Jan;237(1):173-87 PubMed

New Phytol. 2013 Jan;197(1):111-22 PubMed

Plant Cell. 2012 Nov;24(11):4511-24 PubMed

J Plant Physiol. 2013 Sep 1;170(13):1194-201 PubMed

Carbohydr Res. 1990 Apr 25;200:9-31 PubMed

Biochem J. 2013 Nov 1;455(3):307-18 PubMed

Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998-9002 PubMed

Curr Opin Plant Biol. 2014 Dec;22:122-131 PubMed

Plant Cell Physiol. 2015 Feb;56(2):180-94 PubMed

Plant J. 2015 Sep;83(5):753-69 PubMed

Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed

Plant J. 2017 Feb;89(4):651-670 PubMed

Biochem J. 2017 Mar 8;474(7):1055-1070 PubMed

Sci Rep. 2017 Apr 26;7:46099 PubMed

Chembiochem. 2018 Apr 16;19(8):793-798 PubMed

Acta Crystallogr D Struct Biol. 2018 May 1;74(Pt 5):463-470 PubMed

Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed

Nature. 1970 Aug 15;227(5259):680-5 PubMed

Carbohydr Res. 1993 Oct 4;248:285-301 PubMed

J Mol Biol. 1993 Dec 5;234(3):779-815 PubMed

Plant J. 1993 May;3(5):691-700 PubMed

Plant J. 1993 May;3(5):701-11 PubMed

Plant J. 1993 Jan;3(1):1-30 PubMed

Planta. 1996;200(2):221-8 PubMed

Plant Physiol. 1997 May;114(1):9-13 PubMed

Planta. 1998 Feb;204(2):242-51 PubMed

Nucleic Acids Res. 1998 Apr 1;26(7):1628-35 PubMed

Biochem J. 1997 Nov 1;327 ( Pt 3):699-708 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...