Effect of Antibiotic Treatment on the Gastrointestinal Microbiome of Free-Ranging Western Lowland Gorillas (Gorilla g. gorilla)
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26984253
DOI
10.1007/s00248-016-0745-5
PII: 10.1007/s00248-016-0745-5
Knihovny.cz E-resources
- Keywords
- Antibiotics, Bacteria, Gastrointestinal microbiome, Gorilla, Illumina MiSeq, Medical treatment,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteroidetes growth & development MeSH
- Cephalosporins pharmacology MeSH
- Feces microbiology MeSH
- Firmicutes growth & development MeSH
- Gorilla gorilla microbiology MeSH
- Ape Diseases drug therapy MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Ruminococcus growth & development MeSH
- Gastrointestinal Microbiome drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Central African Republic MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Cephalosporins MeSH
- RNA, Ribosomal, 16S MeSH
The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.
J Craig Venter Institute 4120 Capricorn Lane La Jolla CA 92037 USA
J Craig Venter Institute 9704 Medical Center Drive Rockville MD 20850 USA
Liberec Zoo Masarykova 1347 31 Liberec 46001 Czech Republic
WWF Dzanga Sangha Protected Areas BP 1053 Bangui Central African Republic
See more in PubMed
PLoS One. 2014 Mar 11;9(3):e90731 PubMed
Trends Microbiol. 1996 Nov;4(11):430-5 PubMed
J Appl Microbiol. 2014 May;116(5):1094-105 PubMed
Infect Immun. 2009 Jun;77(6):2367-75 PubMed
Appl Environ Microbiol. 2000 Oct;66(10):4523-7 PubMed
Cell Host Microbe. 2008 Apr 17;3(4):213-23 PubMed
PLoS One. 2014 Apr 18;9(4):e95476 PubMed
Am J Primatol. 2010 Jun;72(7):566-74 PubMed
Gut. 2013 Nov;62(11):1591-601 PubMed
Nat Rev Microbiol. 2011 Apr;9(4):233-43 PubMed
J Zoo Wildl Med. 2013 Dec;44(4):1027-35 PubMed
J Proteome Res. 2013 Jun 7;12(6):2987-99 PubMed
PLoS Biol. 2010 Nov 16;8(11):e1000546 PubMed
Nat Commun. 2012;3:1179 PubMed
Int J Syst Evol Microbiol. 2006 Jun;56(Pt 6):1331-40 PubMed
Clin Microbiol Rev. 2004 Oct;17(4):697-728, table of contents PubMed
Appl Environ Microbiol. 2006 May;72(5):3788-92 PubMed
PLoS One. 2014 Dec 15;9(12):e114804 PubMed
BMC Microbiol. 2009 Jun 09;9:123 PubMed
N Engl J Med. 2006 Dec 7;355(23):2418-26 PubMed
Am J Phys Anthropol. 2009 Dec;140(4):727-38 PubMed
J Med Primatol. 2009 Aug;38(4):236-40 PubMed
Science. 2008 Jun 20;320(5883):1647-51 PubMed
PLoS Biol. 2008 Nov 18;6(11):e280 PubMed
J Zoo Wildl Med. 2013 Sep;44(3):714-20 PubMed
J Anim Sci. 1997 Oct;75(10):2715-22 PubMed
Cornell Vet. 1975 Jul;65(3):303-30 PubMed
J Proteome Res. 2008 Sep;7(9):3718-28 PubMed
Nat Methods. 2010 May;7(5):335-6 PubMed
Appl Environ Microbiol. 1999 Aug;65(8):3738-41 PubMed
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16431-5 PubMed
Nat Rev Microbiol. 2008 Feb;6(2):121-31 PubMed
Gastroenterol Clin Biol. 2010 Sep;34 Suppl 1:S16-22 PubMed
Antimicrob Resist Infect Control. 2012 Nov 27;1(1):39 PubMed
J Vet Pharmacol Ther. 2011 Oct;34(5):476-81 PubMed
Nature. 2006 Dec 21;444(7122):1022-3 PubMed
J Microbiol. 2014 Aug;52(8):646-51 PubMed
J Appl Microbiol. 1998 Aug;85(2):372-80 PubMed
Best Pract Res Clin Gastroenterol. 2004 Apr;18(2):299-313 PubMed
Vet Microbiol. 2014 Jul 16;171(3-4):422-31 PubMed
Am J Vet Res. 2012 Oct;73(10):1512-8 PubMed
ISME J. 2016 Mar;10 (3):707-20 PubMed
Gut Microbes. 2014 Jan-Feb;5(1):86-95 PubMed
J Bacteriol. 2005 Jun;187(11):3739-51 PubMed
Am J Primatol. 2011 Sep;73(9):909-19 PubMed
Infection. 1991 Sep-Oct;19(5):313-6 PubMed
Mol Ecol. 2015 May;24(10):2551-65 PubMed
PLoS Pathog. 2008 Feb 8;4(2):e20 PubMed
ISME J. 2007 May;1(1):56-66 PubMed
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1691-6 PubMed
Nature. 2009 Jan 22;457(7228):480-4 PubMed