Implementation of Mass Cytometry for Immunoprofiling of Patients with Solid Tumors
Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30886872
PubMed Central
PMC6388349
DOI
10.1155/2019/6705949
Knihovny.cz E-zdroje
- MeSH
- analýza jednotlivých buněk MeSH
- antigeny CD45 imunologie MeSH
- deoxyribonukleasa I metabolismus MeSH
- imunofenotypizace metody MeSH
- kolagenasy metabolismus MeSH
- lidé MeSH
- lymfocyty fyziologie MeSH
- monoklonální protilátky metabolismus MeSH
- myeloidní buňky fyziologie MeSH
- nádory diagnóza imunologie MeSH
- palladium metabolismus MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- taxonomické DNA čárové kódování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD45 MeSH
- deoxyribonukleasa I MeSH
- kolagenasy MeSH
- monoklonální protilátky MeSH
- palladium MeSH
Monitoring immune responses to solid cancers may be a better prognostic tool than conventional staging criteria, and it can also serve as an important criterion for the selection of individualized therapy. Multiparametric phenotyping by mass cytometry extended possibilities for immunoprofiling. However, careful optimization of each step of such method is necessary for obtaining reliable results. Also, with respect to procedure length and costs, sample preparation, staining, and storage should be optimized. Here, we designed a panel of 31 antibodies which allows for identification of several subpopulations of lymphoid and myeloid cells in a solid tumor and peripheral blood simultaneously. For sample preparation, disaggregation of tumor tissue with two different collagenases combined with DNase I was compared, and removal of dead or tumor cells by magnetic separation was evaluated. Two possible procedures of barcoding for single-tube staining of several samples were examined. While the palladium-based barcoding affected the stability of several antigens, the staining with two differently labeled CD45 antibodies was suitable for cells isolated from a patient's blood and tumor. The storage of samples in the intercalation solution for up to two weeks did not influence results of the analysis, which allowed the measurement of samples collected within this interval on the same day. This procedure optimized on samples from patients with head and neck squamous cell carcinoma enabled identification of various immune cells including rare subpopulations.
Zobrazit více v PubMed
Drakes M. L., Stiff P. Harnessing immunosurveillance: current developments and future directions in cancer immunotherapy. ImmunoTargets and Therapy. 2014;2014:151–165. doi: 10.2147/ITT.S37790. PubMed DOI PMC
Menon S., Shin S., Dy G. Advances in cancer immunotherapy in solid tumors. Cancers. 2016;8(12):p. 106. doi: 10.3390/cancers8120106. PubMed DOI PMC
Fridman W. H., Zitvogel L., Sautès–Fridman C., Kroemer G. The immune contexture in cancer prognosis and treatment. Nature Reviews Clinical Oncology. 2017;14(12):717–734. doi: 10.1038/nrclinonc.2017.101. PubMed DOI
Pagès F., Kirilovsky A., Mlecnik B., et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. Journal of Clinical Oncology. 2009;27(35):5944–5951. doi: 10.1200/JCO.2008.19.6147. PubMed DOI
Ascierto P. A., Capone M., Urba W. J., et al. The additional facet of immunoscore: immunoprofiling as a possible predictive tool for cancer treatment. Journal of Translational Medicine. 2013;11(1):p. 54. doi: 10.1186/1479-5876-11-54. PubMed DOI PMC
Bercovici N., Trautmann A. Revisiting the role of T cells in tumor regression. OncoImmunology. 2012;1(3):346–350. doi: 10.4161/onci.18800. PubMed DOI PMC
Thoreau M., Penny H. X. L., Tan K. W., et al. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget. 2015;6(29):27832–27846. doi: 10.18632/oncotarget.4940. PubMed DOI PMC
Spitzer M. H., Nolan G. P. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–791. doi: 10.1016/j.cell.2016.04.019. PubMed DOI PMC
Leelatian N., Doxie D. B., Greenplate A. R., et al. Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry Part B: Clinical Cytometry. 2017;92(1):68–78. doi: 10.1002/cyto.b.21481. PubMed DOI PMC
Kaštánková I., Poláková I., Dušková M., Šmahel M. Combined cancer immunotherapy against Aurora kinase A. Journal of Immunotherapy. 2016;39(4):160–170. doi: 10.1097/CJI.0000000000000120. PubMed DOI
Partlová S., Bouček J., Kloudová K., et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. OncoImmunology. 2015;4(1, article e965570) doi: 10.4161/21624011.2014.965570. PubMed DOI PMC
Lai L., Ong R., Li J., Albani S. A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF) Cytometry Part A. 2015;87(4):369–374. doi: 10.1002/cyto.a.22640. PubMed DOI PMC
Mallone R., Mannering S. I., Brooks-Worrell B. M., et al. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clinical & Experimental Immunology. 2011;163(1):33–49. doi: 10.1111/j.1365-2249.2010.04272.x. PubMed DOI PMC
Nagel A., Möbs C., Raifer H., Wiendl H., Hertl M., Eming R. CD3-positive B cells: a storage-dependent phenomenon. PLoS One. 2014;9(10) doi: 10.1371/journal.pone.0110138. PubMed DOI PMC
Leelatian N., Doxie D. B., Greenplate A. R., Sinnaeve J., Ihrie R. A., Irish J. M. Preparing viable single cells from human tissue and tumors for cytomic analysis. Current Protocols in Molecular Biology. 2017;118(1):25C.1.1–25C.1.23. doi: 10.1002/cpmb.37. PubMed DOI PMC
Bodenmiller B., Zunder E. R., Finck R., et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotechnology. 2012;30(9):858–867. doi: 10.1038/nbt.2317. PubMed DOI PMC
Zunder E. R., Finck R., Behbehani G. K., et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nature Protocols. 2015;10(2):316–333. doi: 10.1038/nprot.2015.020. PubMed DOI PMC
Catena R., Özcan A., Zivanovic N., Bodenmiller B. Enhanced multiplexing in mass cytometry using osmium and ruthenium tetroxide species. Cytometry Part A. 2016;89(5):491–497. doi: 10.1002/cyto.a.22848. PubMed DOI
Mei H. E., Leipold M. D., Schulz A. R., Chester C., Maecker H. T. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. The Journal of Immunology. 2015;194(4):2022–2031. doi: 10.4049/jimmunol.1402661. PubMed DOI PMC
ARG1 mRNA Level Is a Promising Prognostic Marker in Head and Neck Squamous Cell Carcinomas