Characterisation of mecA gene negative Staphylococcus aureus isolated from bovine mastitis milk from Northern Germany
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
30888635
DOI
10.1007/s12223-019-00698-z
PII: 10.1007/s12223-019-00698-z
Knihovny.cz E-resources
- MeSH
- Genes, Bacterial genetics MeSH
- Drug Resistance, Bacterial genetics MeSH
- Bacterial Proteins MeSH
- Enterotoxins genetics MeSH
- Virulence Factors genetics MeSH
- Phenotype MeSH
- Genotype MeSH
- Humans MeSH
- Mastitis, Bovine microbiology MeSH
- Milk microbiology MeSH
- Multilocus Sequence Typing MeSH
- Food Microbiology MeSH
- Penicillin-Binding Proteins deficiency MeSH
- Cattle MeSH
- Staphylococcal Infections microbiology MeSH
- Staphylococcus aureus classification genetics isolation & purification MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Cattle MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Germany epidemiology MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Enterotoxins MeSH
- Virulence Factors MeSH
- mecA protein, Staphylococcus aureus MeSH Browser
- Penicillin-Binding Proteins MeSH
Staphylococcus aureus (S. aureus) is an important causative agent of contagious intermammary infections in dairy cattle. S. aureus is also considered as an important foodborne pathogen and cause of food poisoning cases and outbreaks worldwide. In order to understand the molecular ecology of S. aureus, the present study compared phenotypic and genotypic characteristics of 70 S. aureus isolates from bovine mastitis milk samples collected during the period from August 2001 to March 2014 in different regions of Northern Germany. The S. aureus isolates were characterised phenotypically, as well as genotypically for their genetic diversity using multi-locus sequence typing (MLST), spa typing and the presence of virulence genes encoding 16 staphylococcal enterotoxins (sea-selu), toxic shock syndrome toxin (tst), thermonuclease (nuc), clumping factor (clfA and clfB), coagulase (coa) and the methicillin resistance gene mecA. A total of 16 sequence types were grouped into eight clonal complexes (CCs), and 17 spa types were identified. These included six novel sequence types and one novel spa type. The majority of bovine mastitis milk-associated sequence types belonged to the clonal complex CC5, CC97, CC133, and CC151 and showed closely related genotypes or lineages with sequence types of human origin. The genotype CC133 (ST133-t1403) was predominant, constituting 27.1% of the isolates. In addition, the S. aureus isolates displayed nine different enterotoxigenic profiles. All S. aureus were methicillin-susceptible (MSSA). The current study provides new information on phenotypic and genotypic traits of S. aureus isolates from bovine mastitis. The comparison of characteristics of isolates from the present study originating from mastitis milk showed similarities with human isolates. This might help to better understand the distribution of S. aureus in the one health context.
Department of Veterinary Public Health College of Veterinary Medicine University of Mosul Mosul Iraq
German Federal Institute for Risk Assessment Max Dohrn Str 8 10 10589 Berlin Germany
See more in PubMed
Vet Microbiol. 2010 May 19;142(3-4):361-6 PubMed
J Clin Microbiol. 1991 Mar;29(3):426-30 PubMed
Int J Food Microbiol. 2008 May 31;124(2):211-6 PubMed
FEMS Microbiol Lett. 2005 Nov 15;252(2):267-72 PubMed
Antimicrob Agents Chemother. 2008 Oct;52(10):3817-9 PubMed
J Clin Microbiol. 2004 Aug;42(8):3869-72 PubMed
J Clin Microbiol. 2000 Mar;38(3):1008-15 PubMed
Vet Microbiol. 2010 Mar 24;141(3-4):326-31 PubMed
Vet Microbiol. 2012 Nov 9;160(1-2):183-8 PubMed
Int J Food Microbiol. 2012 Feb 1;153(1-2):142-7 PubMed
J Dairy Sci. 2014 Mar;97(3):1305-12 PubMed
Foodborne Pathog Dis. 2006 Fall;3(3):274-83 PubMed
J Clin Microbiol. 2012 Jun;50(6):2152-5 PubMed
Vet Microbiol. 2011 Dec 15;153(3-4):285-92 PubMed
Appl Environ Microbiol. 2013 Mar;79(5):1739-42 PubMed
Toxins (Basel). 2010 Aug;2(8):2106-16 PubMed
PLoS One. 2013;8(3):e58187 PubMed
Genome Biol Evol. 2010 Jul 12;2:454-66 PubMed
Infect Genet Evol. 2014 Jan;21:602-15 PubMed
Int J Food Microbiol. 2008 Jan 15;121(1):66-73 PubMed
J Clin Microbiol. 1999 Aug;37(8):2446-9 PubMed
Toxins (Basel). 2010 Jul;2(7):1751-73 PubMed
Front Cell Infect Microbiol. 2012 Apr 17;2:52 PubMed
N Z Vet J. 2011 Jan;59(1):16-23 PubMed
J Clin Microbiol. 2011 Feb;49(2):638-46 PubMed
J Food Prot. 2011 Nov;74(11):1852-9 PubMed
Emerg Infect Dis. 2008 Sep;14(9):1383-9 PubMed
J Clin Microbiol. 2010 Feb;48(2):375-86 PubMed
J Clin Microbiol. 1999 Nov;37(11):3556-63 PubMed
Int J Med Microbiol. 2011 Aug;301(6):500-5 PubMed
Appl Microbiol Biotechnol. 1992 Aug;37(5):685-90 PubMed
J Dairy Sci. 2015 Jan;98(1):155-68 PubMed
Vet Microbiol. 2012 Jul 6;158(1-2):228-31 PubMed
Food Microbiol. 2009 May;26(3):278-82 PubMed
Vet Microbiol. 2010 Oct 26;145(3-4):360-5 PubMed
Vet Microbiol. 2007 Nov 15;125(1-2):128-40 PubMed
J Clin Microbiol. 1999 Oct;37(10):3411-4 PubMed
J Clin Microbiol. 2010 Jun;48(6):2130-9 PubMed
J Clin Microbiol. 2002 Nov;40(11):3894-902 PubMed
Ann Clin Microbiol Antimicrob. 2006 Nov 10;5:26 PubMed
Front Cell Infect Microbiol. 2013 Aug 13;3:38 PubMed
J Dairy Sci. 2012 Sep;95(9):4921-4930 PubMed
J Clin Microbiol. 2012 Mar;50(3):688-95 PubMed
Appl Environ Microbiol. 2005 May;71(5):2793-5 PubMed
Front Microbiol. 2018 Mar 13;9:436 PubMed
Annu Rev Microbiol. 2016 Sep 8;70:459-78 PubMed
Microbiology. 2008 Jul;154(Pt 7):1949-59 PubMed
J Clin Microbiol. 2005 Oct;43(10):5026-33 PubMed
J Dairy Sci. 2007 Oct;90(10):4661-9 PubMed
J Clin Microbiol. 2003 Sep;41(9):4465-7 PubMed
Vet Q. 2002 Dec;24(4):181-98 PubMed
J Med Microbiol. 2009 Oct;58(Pt 10):1343-53 PubMed