The Effect of Butyrate-Supplemented Parenteral Nutrition on Intestinal Defence Mechanisms and the Parenteral Nutrition-Induced Shift in the Gut Microbiota in the Rat Model
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30941370
PubMed Central
PMC6421034
DOI
10.1155/2019/7084734
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Butyrates pharmacology MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Ileum drug effects pathology MeSH
- Colon drug effects pathology MeSH
- Lymph Nodes drug effects metabolism MeSH
- Lymphocytes drug effects metabolism MeSH
- RNA, Messenger genetics metabolism MeSH
- Models, Animal MeSH
- Mucins biosynthesis MeSH
- Paneth Cells drug effects metabolism MeSH
- Parenteral Nutrition * MeSH
- Peptides genetics metabolism MeSH
- Permeability MeSH
- Rats, Wistar MeSH
- Dietary Supplements * MeSH
- Tight Junction Proteins metabolism MeSH
- Gene Expression Regulation drug effects MeSH
- Intestines pathology MeSH
- Gastrointestinal Microbiome * drug effects MeSH
- Intestine, Small drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Butyrates MeSH
- RNA, Messenger MeSH
- Mucins MeSH
- Peptides MeSH
- Tight Junction Proteins MeSH
Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whether i.v. butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ), and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect.
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Prevedig Prague 1 110 00 Czech Republic
RECETOX Faculty of Science Masaryk University Brno 625 00 Czech Republic
See more in PubMed
Wildhaber B. E., Yang H., Spencer A. U., Drongowski R. A., Teitelbaum D. H. Lack of enteral nutrition - effects on the intestinal immune system. Journal of Surgical Research. 2005;123(1):8–16. doi: 10.1016/j.jss.2004.06.015. PubMed DOI
Alverdy J. C., Aoys E., Moss G. S. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery. 1988;104(2):185–190. PubMed
Hodin C. M., Visschers R. G. J., Rensen S. S., et al. Total parenteral nutrition induces a shift in the firmicutes to bacteroidetes ratio in association with paneth cell activation in rats. Journal of Nutrition. 2012;142(12):2141–2147. doi: 10.3945/jn.112.162388. PubMed DOI
Iida T., Onodera K., Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology. 2017;23(11):1944–1953. doi: 10.3748/wjg.v23.i11.1944. PubMed DOI PMC
Hodin C. M., Lenaerts K., Grootjans J., et al. Starvation compromises Paneth cells. The American Journal of Pathology. 2011;179(6):2885–2893. doi: 10.1016/j.ajpath.2011.08.030. PubMed DOI PMC
Pierre J. F., Heneghan A. F., Tsao F. H. C., et al. Route and type of nutrition and surgical stress influence secretory phospholipase A2 secretion of the murine small intestine. Journal of Parenteral and Enteral Nutrition. 2011;35(6):748–756. doi: 10.1177/0148607111414025. PubMed DOI PMC
Heneghan A. F., Pierre J. F., Tandee K., et al. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. Journal of Parenteral and Enteral Nutrition. 2014;38(7):817–824. doi: 10.1177/0148607113497514. PubMed DOI PMC
Adler K. B., Tuvim M. J., Dickey B. F. Regulated mucin secretion from airway epithelial cells. Frontiers in Endocrinology. 2013;4, article 129 doi: 10.3389/fendo.2013.00129. PubMed DOI PMC
Allaire J. M., Morampudi V., Crowley S. M., et al. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2018;314(3):G360–G377. doi: 10.1152/ajpgi.00181.2017. PubMed DOI PMC
Conour J. E., Ganessunker D., Tappenden K. A., Donovan S. M., Gaskins H. R. Acidomucin goblet cell expansion induced by parenteral nutrition in the small intestine of piglets. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2002;283(5):G1185–G1196. doi: 10.1152/ajpgi.00097.2002. PubMed DOI
Smirnov A., Sklan D., Uni Z. Mucin dynamics in the chick small intestine are altered by starvation. Journal of Nutrition. 2004;134(4):736–742. doi: 10.1093/jn/134.4.736. PubMed DOI
Zhou Q., Cadrin M., Herrmann H., et al. Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. The Journal of Biological Chemistry. 2006;281(24):16453–16461. doi: 10.1074/jbc.M512284200. PubMed DOI
Mazmanian S. K., Cui H. L., Tzianabos A. O., Kasper D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118. doi: 10.1016/j.cell.2005.05.007. PubMed DOI
Christensen H. R., Frøkiær H., Pestka J. J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology. 2002;168(1):171–178. doi: 10.4049/jimmunol.168.1.171. PubMed DOI
Ivanov I. I., Frutos R. D. L., Manel N., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host & Microbe. 2008;4(4):337–349. doi: 10.1016/j.chom.2008.09.009. PubMed DOI PMC
Iwasaki A., Kelsall B. L. Freshly isolated peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. The Journal of Experimental Medicine. 1999;190(2):229–239. doi: 10.1084/jem.190.2.229. PubMed DOI PMC
Kelsall B. L., Leon F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunological Reviews. 2005;206:132–148. doi: 10.1111/j.0105-2896.2005.00292.x. PubMed DOI
Kelly D., Campbell J. I., King T. P., et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunology. 2004;5(1):104–112. doi: 10.1038/ni1018. PubMed DOI
Lee J., Mo J., Katakura K., et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nature Cell Biology. 2006;8(12):1327–1336. doi: 10.1038/ncb1500. PubMed DOI
Beutler B., Rietschel E. T. Innate immune sensing and its roots: the story of endotoxin. Nature Reviews Immunology. 2003;3(2):169–176. doi: 10.1038/nri1004. PubMed DOI
Demehri F. R., Barrett M., Teitelbaum D. H. Changes to the intestinal microbiome with parenteral nutrition: review of a murine model and potential clinical implications. Nutrition in Clinical Practice. 2015;30(6):798–806. doi: 10.1177/0884533615609904. PubMed DOI
Miyasaka E. A., Feng Y., Poroyko V., et al. Total parenteral nutrition-associated lamina propria inflammation in mice is mediated by a MyD88-dependent mechanism. The Journal of Immunology. 2013;190(12):6607–6615. doi: 10.4049/jimmunol.1201746. PubMed DOI PMC
Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews. 2010;23(2):366–384. doi: 10.1017/S0954422410000247. PubMed DOI
Apprill A., Mcnally S., Parsons R., Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology. 2015;75(2):129–137. doi: 10.3354/ame01753. DOI
Caporaso J. G., Lauber C. L., Walters W. A., et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Acadamy of Sciences of the United States of America. 2011;108(supplement 1):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Caporaso J. G., Kuczynski J., Stombaugh J., et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Edgar R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Aitchison J. The Statistical Analysis of Compositional Data. London, UK: Chapman and Hall; 1986. (Monographs on Statistics and Applied Probability). DOI
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
Busch R. A., Heneghan A. F., Pierre J. F., et al. Bombesin preserves goblet cell resistin-like molecule β during parenteral nutrition but not other goblet cell products. Journal of Parenteral and Enteral Nutrition. 2016;40(7):1042–1049. doi: 10.1177/0148607115585353. PubMed DOI PMC
Wang J., Tian F., Zheng H., et al. N-3 polyunsaturated fatty acid-enriched lipid emulsion improves Paneth cell function via the IL-22/Stat3 pathway in a mouse model of total parenteral nutrition. Biochemical and Biophysical Research Communications. 2017;490(2):253–259. doi: 10.1016/j.bbrc.2017.06.032. PubMed DOI
Omata J., Pierre J. F., Heneghan A. F., et al. Parenteral nutrition suppresses the bactericidal response of the small intestine. Surgery. 2013;153(1):17–24. PubMed PMC
Sun X., Yang H., Nose K., et al. Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2008;294(1):G139–G147. doi: 10.1152/ajpgi.00386.2007. PubMed DOI
Shekels L. L., Ho S. B. Characterization of the mouse Muc3 membrane bound intestinal mucin 5′ coding and promoter regions: regulation by inflammatory cytokines. Biochimica et Biophysica Acta—Gene Structure and Expression. 2003;1627(2-3):90–100. doi: 10.1016/S0167-4781(03)00081-2. PubMed DOI
Hamer H. M., Jonkers D. M., Renes I. B., et al. Butyrate enemas do not affect human colonic MUC2 and TFF3 expression. European Journal of Gastroenterology & Hepatology. 2010;22(9):1134–1140. doi: 10.1097/MEG.0b013e32833a6ca0. PubMed DOI
Jiminez J. A., Uwiera T. C., Wade Abbott D., Uwiera R. R. E., Inglis G. D. Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal inflammation in mice infected with Citrobacter rodentium. mSphere. 2017;2(4) PubMed PMC
Gaudier E., Jarry A., Blottière H. M., et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2004;287(6):G1168–G1174. doi: 10.1152/ajpgi.00219.2004. PubMed DOI
Cresci G. A., Glueck B., McMullen M. R., Xin W., Allende D., Nagy L. E. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. Journal of Gastroenterology and Hepatology. 2017;32(9):1587–1597. doi: 10.1111/jgh.13731. PubMed DOI PMC
Dou X., Han J., Song W., et al. Sodium butyrate improves porcine host defense peptide expression and relieves the inflammatory response upon toll-like receptor 2 activation and histone deacetylase inhibition in porcine kidney cells. Oncotarget . 2017;8(16):26532–26551. PubMed PMC
Sunkara L. T., Achanta M., Schreiber N. B., et al. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS ONE. 2011;6, article e27225(11) PubMed PMC
Xiong H., Guo B., Gan Z., et al. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Scientific Reports. 2016;6, article 27070 doi: 10.1038/srep27070. PubMed DOI PMC
Zhou D., Pan Q., Xin F.-Z., et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology. 2017;23(1):60–75. doi: 10.3748/wjg.v23.i1.60. PubMed DOI PMC
Pierre J. F. Gastrointestinal immune and microbiome changes during parenteral nutrition. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2017;312(3):G246–G256. doi: 10.1152/ajpgi.00321.2016. PubMed DOI PMC
Rooks M. G., Garrett W. S. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology. 2016;16(6):341–352. doi: 10.1038/nri.2016.42. PubMed DOI PMC
Arpaia N., Campbell C., Fan X., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455. doi: 10.1038/nature12726. PubMed DOI PMC
Bollrath J., Powrie F. Immunology. Feed your Tregs more fiber. Science. 2013;341(6145):463–464. doi: 10.1126/science.1242674. PubMed DOI
Smith P. M., Howitt M. R., Panikov N., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–573. doi: 10.1126/science.1241165. PubMed DOI PMC
Kim M., Qie Y., Park J., Kim C. H. Gut microbial metabolites fuel host antibody responses. Cell Host & Microbe. 2016;20(2):202–214. doi: 10.1016/j.chom.2016.07.001. PubMed DOI PMC
Kespohl M., Vachharajani N., Luu M., et al. The microbial metabolite butyrate induces expression of Th1-associated factors in CD4(+) T cells. Frontiers in Immunology. 2017;8, article 1036 doi: 10.3389/fimmu.2017.01036. PubMed DOI PMC
Murakoshi S., Fukatsu K., Omata J., et al. Effects of adding butyric acid to PN on gut-associated lymphoid tissue and mucosal immunoglobulin a levels. Journal of Parenteral and Enteral Nutrition. 2011;35(4):465–472. doi: 10.1177/0148607110387610. PubMed DOI
Josefowicz S. Z., Niec R. E., Kim H. Y., et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482(7385):395–399. doi: 10.1038/nature10772. PubMed DOI PMC
Lord J. D. Promises and paradoxes of regulatory T cells in inflammatory bowel disease. World Journal of Gastroenterology. 2015;21(40):11236–11245. doi: 10.3748/wjg.v21.i40.11236. PubMed DOI PMC
Maul J., Loddenkemper C., Mundt P., et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–1878. doi: 10.1053/j.gastro.2005.03.043. PubMed DOI
Lord J. D., Valliant-Saunders K., Hahn H., Thirlby R. C., Ziegler S. F. Paradoxically increased FOXP3+ T cells in IBD do not preferentially express the isoform of FOXP3 lacking exon 2. Digestive Diseases and Sciences. 2012;57(11):2846–2855. doi: 10.1007/s10620-012-2292-3. PubMed DOI PMC
Cao S., Ren J., Sun L., Gu G., Yuan Y., Li J. Fish oil-supplemented parenteral nutrition prolongs survival while beneficially altering phospholipids' fatty acid composition and modulating immune function in rat sepsis. Shock. 2011;36(2):184–190. doi: 10.1097/SHK.0b013e31821e4f8b. PubMed DOI
Venet F., Chung C.-S., Monneret G., et al. Regulatory T cell populations in sepsis and trauma. Journal of Leukocyte Biology. 2008;83(3):523–535. doi: 10.1189/jlb.0607371. PubMed DOI
Kramer D. R., Sutherland R. M., Bao S., Husband A. J. Cytokine mediated effects in mucosal immunity. Immunology & Cell Biology. 1995;73(5):389–396. doi: 10.1111/j.1440-1711.1995.tb03887.x. PubMed DOI
Hanna M. K., Kudsk K. A. Nutritional and pharmacological enhancement of gut-associated lymphoid tissue. Canadian Journal of Gastroenterology and Hepatology. 2000;14(supplement D):145D–151D. PubMed
Whelan K. Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proceedings of the Nutrition Society. 2013;72(3):288–298. doi: 10.1017/S0029665113001262. PubMed DOI
Galfi P., Bokori J. Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Veterinaria Hungarica. 1990;38(1-2):3–17. PubMed
Jellbauer S., Raffatellu M. An intestinal arsonist: pathobiont ignites IBD and flees the scene. Gut. 2014;63(7):1034–1035. doi: 10.1136/gutjnl-2013-305589. PubMed DOI
Verstreken I., Laleman W., Wauters G., Verhaegen J. Desulfovibrio desulfuricans bacteremia in an immunocompromised host with a liver graft and ulcerative colitis. Journal of Clinical Microbiology. 2012;50(1):199–201. doi: 10.1128/JCM.00987-11. PubMed DOI PMC