Online Rheometry Investigation of Flow/Slip Behavior of Powder Injection Molding Feedstocks

. 2019 Mar 06 ; 11 (3) : . [epub] 20190306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30960416

Grantová podpora
LO1504 Ministry of Education, Youth, and Sports of the Czech Republic

Wall slip in the flow of powder injection molding (PIM) compounds can be the cause of unrealistically low viscosity values, and can lead to a failure of flow simulation approaches. Regardless of its importance, it has been considered only scarcely in the rheological models applied to PIM materials. In this paper, an online extrusion rheometer equipped with rectangular slit dies was used to evaluate the slip velocity of commercial as well as in-house-prepared PIM feedstocks based on metallic and ceramic powders at close-to-processing conditions. The tested slit dies varied in their dimensions and surface roughness. The wall-slip effect was quantified using the Mooney analysis of slip velocities. The smaller gap height (1 mm) supported the wall-slip effect. It was shown that both the binder composition and the powder characteristic affect slip velocity. Slip velocity can be reduced by tailoring a powder particle size distribution towards smaller particle fractions. The thickness of the polymer layer formed at the channel wall is higher for water-soluble feedstocks, while in the case of the catalytic polyacetal feedstocks the effect of surface roughness was manifested through lower viscosity at smooth surfaces.

Zobrazit více v PubMed

German R.M., Bose A. Injection Molding of Metals and Ceramics. 1st ed. Metal Powder Industry Federation; Princeton, NJ, USA: 1997.

German R.M. Powder Metallurgy and Particulate Materials Processing. 1st ed. Metal Powder Industry Federation; Princeton, NJ, USA: 2005.

Thavanayagam G., Pickering K.L., Swan J.E., Cao P. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection molding. Powder Technol. 2014;269:227–232. doi: 10.1016/j.powtec.2014.09.020. DOI

Zauner R., Binet C., Heaney D.F., Piemme J. Variability of feedstock viscosity and its correlation with dimensional variability of green powder injection moulded components. Powder Metall. 2004;47:151–156. doi: 10.1179/003258904225015473. DOI

He H., Li Y., Lou J., Li D., Liu C. Prediction of density variation in powder injection moulding-filling process by using granular modelling with interstitial power-law fluid. Powder Technol. 2016;291:52–59. doi: 10.1016/j.powtec.2015.12.009. DOI

Denn M.M. Extrusion instabilities and wall slip. Annu. Rev. Fluid. Mech. 2001;33:265–287. doi: 10.1146/annurev.fluid.33.1.265. DOI

Delime A., Moan M. Lateral migrations of solid spheres in tube flow. Rheol. Acta. 1991;30:131–139. doi: 10.1007/BF01134602. DOI

Barnes H.A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure. J. Non-Newton. Fluid. 1995;56:221–251. doi: 10.1016/0377-0257(94)01282-M. DOI

Bryan M.P., Rough S.L., Wilson D.I. Investigation of static zone and wall slip through sequential ram extrusion of contrasting micro-crystalline cellulose-based pastes. J. Non-Newton. Fluid. 2015;220:57–68. doi: 10.1016/j.jnnfm.2014.08.007. DOI

Kalyon M., Aktas S. Factors Affecting the Rheology and Processability of Highly Filled Suspensions. Annu. Rev. Chem. Biomol. 2014;5:229–254. doi: 10.1146/annurev-chembioeng-060713-040211. PubMed DOI

Soltani F., Yilmazer U. Slip velocity and slip layer thickness in flow of concentrated suspensions. J. Appl. Polym. Sci. 1998;70:515–522. doi: 10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2-#. DOI

Lam Y.C., Wang Z.Y., Chen X., Joshi S.C. Wall slip of concentrated suspension melts in capillary flows. Powder Technol. 2007;77:162–169. doi: 10.1016/j.powtec.2007.03.044. DOI

Thornagel M. MIM-Simulation: A virtual study on phase separation. Proc. EURO PM 2009. 2009;2:135–140.

Hausnerova B., Marcanikova L., Filip P., Saha P. Wall-slip velocity as a quantitative measure of powder-binder separation during powder injection moulding; Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM 2010; Florence, Italy. 10–14 October 2010; pp. 557–562.

Hausnerova B., Sanetrnik D., Ponizil P. Surface structure analysis of injection molded highly filled polymer melts. Polym. Comp. 2013;34:1553–1558. doi: 10.1002/pc.22572. DOI

Gulmus S.A., Yilmazer U. Effect of volume fraction and particle size on wall slip in flow of polymeric suspension. J. Appl. Polym. Sci. 2005;98:439–448. doi: 10.1002/app.21928. DOI

Chen Y., Kalyon D.M., Bayramli E. Effects of surface roughness and the chemical structure of materials of construction on wall slip behavior of linear low density polyethylene in capillary flow. J. Appl. Polym. Sci. 1993;50:1169–1177. doi: 10.1002/app.1993.070500707. DOI

Aral B.K., Kalyon D.M. Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspension. J. Rheol. 1994;38:957–972. doi: 10.1122/1.550537. DOI

Gulmus S.A., Yilmazer U. Effect of the surface roughness and construction material on wall slip in the flow of concentrated suspensions. J. Appl. Polym. Sci. 2006;103:3341–3347. doi: 10.1002/app.25468. DOI

Medhi B.J., Kumar A.A., Singh A. Apparent wall slip velocity measurement in free surface flow of concentrated suspensions. Int. J. Multiph. Flow. 2011;37:609–619. doi: 10.1016/j.ijmultiphaseflow.2011.03.006. DOI

Kalyon D.M. Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol. 2005;49:621–640. doi: 10.1122/1.1879043. DOI

Sanetrnik D., Hausnerova B., Filip P., Hnatkova E. Influence of capillary die geometry on wall slip of highly filled powder injection molding compounds. Powder Technol. 2018;325:615–619. doi: 10.1016/j.powtec.2017.11.041. DOI

Walter B.L., Pelteret J.P., Kaschta J., Schubert D.W., Steinmann P. On the wall slip phenomenon of elastomers in oscillatory shear measurement using parallel-plate rotational rheometry: II. Influence of experimental conditions. Polym. Test. 2017;61:455–463. doi: 10.1016/j.polymertesting.2017.05.036. DOI

Kwon T.H., Ahn S.Y. Slip characterization of powder/binder mixtures and its significance in the filling process analysis of powder injection molding. Powder Technol. 1995;85:45–55. doi: 10.1016/0032-5910(95)03001-P. DOI

Liu L., Ma Y.H., He Z.Y. Rheological behavior of zirconia feedstock flowing through various channels considering wall-slip. Ceram. Int. 2018;44:22387–22392. doi: 10.1016/j.ceramint.2018.09.003. DOI

Liu L., Gao Y.Y., Qi X.T., Qi M.X. Effect of wall slip on ZrO2 rheological behavior in micro powder injection molding. Ceram. Int. 2018;44:16282–16294. doi: 10.1016/j.ceramint.2018.06.022. DOI

Mooney M. Explicit formulas for slip and fluidity. J. Rheol. 1931;2:210–222. doi: 10.1122/1.2116364. DOI

Kalyon D., Gevgilili H., Kowalczyk J.E., Prickett S., Murphy C. Use of adjustable-gap on-line and off-line slit rheometers for the characterization of the wall slip and shear viscosity behavior of energetic formulations. J. Energ. Mater. 2006;24:175–193. doi: 10.1080/07370650600791080. DOI

Papanikolaou M., Frank M., Drikakis D. Effects of surface roughness on shear viscosity. Phys. Rev. E. 2017;95 doi: 10.1103/PhysRevE.95.033108. PubMed DOI

Jeong M., Kim Y., Zhou W., Tao W.Q., Ha M.Y. Effects of surface wettability, roughness and moving wall velocity on the Couette flow in nano-channel using multi-scale hybrid method. Comput. Fluids. 2017;147:1–11. doi: 10.1016/j.compfluid.2017.01.021. DOI

Hausnerova B., Bleyan D., Kasparkova V., Pata V. Surface adhesion between ceramic injection molding feedstocks and processing tools. Ceram. Int. 2016;2016 42:460–465. doi: 10.1016/j.ceramint.2015.08.132. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...