Online Rheometry Investigation of Flow/Slip Behavior of Powder Injection Molding Feedstocks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1504
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
30960416
PubMed Central
PMC6473305
DOI
10.3390/polym11030432
PII: polym11030432
Knihovny.cz E-zdroje
- Klíčová slova
- feedstock, online rheometer, powder injection molding, slit die, surface roughness, wall slip,
- Publikační typ
- časopisecké články MeSH
Wall slip in the flow of powder injection molding (PIM) compounds can be the cause of unrealistically low viscosity values, and can lead to a failure of flow simulation approaches. Regardless of its importance, it has been considered only scarcely in the rheological models applied to PIM materials. In this paper, an online extrusion rheometer equipped with rectangular slit dies was used to evaluate the slip velocity of commercial as well as in-house-prepared PIM feedstocks based on metallic and ceramic powders at close-to-processing conditions. The tested slit dies varied in their dimensions and surface roughness. The wall-slip effect was quantified using the Mooney analysis of slip velocities. The smaller gap height (1 mm) supported the wall-slip effect. It was shown that both the binder composition and the powder characteristic affect slip velocity. Slip velocity can be reduced by tailoring a powder particle size distribution towards smaller particle fractions. The thickness of the polymer layer formed at the channel wall is higher for water-soluble feedstocks, while in the case of the catalytic polyacetal feedstocks the effect of surface roughness was manifested through lower viscosity at smooth surfaces.
Zobrazit více v PubMed
German R.M., Bose A. Injection Molding of Metals and Ceramics. 1st ed. Metal Powder Industry Federation; Princeton, NJ, USA: 1997.
German R.M. Powder Metallurgy and Particulate Materials Processing. 1st ed. Metal Powder Industry Federation; Princeton, NJ, USA: 2005.
Thavanayagam G., Pickering K.L., Swan J.E., Cao P. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection molding. Powder Technol. 2014;269:227–232. doi: 10.1016/j.powtec.2014.09.020. DOI
Zauner R., Binet C., Heaney D.F., Piemme J. Variability of feedstock viscosity and its correlation with dimensional variability of green powder injection moulded components. Powder Metall. 2004;47:151–156. doi: 10.1179/003258904225015473. DOI
He H., Li Y., Lou J., Li D., Liu C. Prediction of density variation in powder injection moulding-filling process by using granular modelling with interstitial power-law fluid. Powder Technol. 2016;291:52–59. doi: 10.1016/j.powtec.2015.12.009. DOI
Denn M.M. Extrusion instabilities and wall slip. Annu. Rev. Fluid. Mech. 2001;33:265–287. doi: 10.1146/annurev.fluid.33.1.265. DOI
Delime A., Moan M. Lateral migrations of solid spheres in tube flow. Rheol. Acta. 1991;30:131–139. doi: 10.1007/BF01134602. DOI
Barnes H.A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure. J. Non-Newton. Fluid. 1995;56:221–251. doi: 10.1016/0377-0257(94)01282-M. DOI
Bryan M.P., Rough S.L., Wilson D.I. Investigation of static zone and wall slip through sequential ram extrusion of contrasting micro-crystalline cellulose-based pastes. J. Non-Newton. Fluid. 2015;220:57–68. doi: 10.1016/j.jnnfm.2014.08.007. DOI
Kalyon M., Aktas S. Factors Affecting the Rheology and Processability of Highly Filled Suspensions. Annu. Rev. Chem. Biomol. 2014;5:229–254. doi: 10.1146/annurev-chembioeng-060713-040211. PubMed DOI
Soltani F., Yilmazer U. Slip velocity and slip layer thickness in flow of concentrated suspensions. J. Appl. Polym. Sci. 1998;70:515–522. doi: 10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2-#. DOI
Lam Y.C., Wang Z.Y., Chen X., Joshi S.C. Wall slip of concentrated suspension melts in capillary flows. Powder Technol. 2007;77:162–169. doi: 10.1016/j.powtec.2007.03.044. DOI
Thornagel M. MIM-Simulation: A virtual study on phase separation. Proc. EURO PM 2009. 2009;2:135–140.
Hausnerova B., Marcanikova L., Filip P., Saha P. Wall-slip velocity as a quantitative measure of powder-binder separation during powder injection moulding; Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM 2010; Florence, Italy. 10–14 October 2010; pp. 557–562.
Hausnerova B., Sanetrnik D., Ponizil P. Surface structure analysis of injection molded highly filled polymer melts. Polym. Comp. 2013;34:1553–1558. doi: 10.1002/pc.22572. DOI
Gulmus S.A., Yilmazer U. Effect of volume fraction and particle size on wall slip in flow of polymeric suspension. J. Appl. Polym. Sci. 2005;98:439–448. doi: 10.1002/app.21928. DOI
Chen Y., Kalyon D.M., Bayramli E. Effects of surface roughness and the chemical structure of materials of construction on wall slip behavior of linear low density polyethylene in capillary flow. J. Appl. Polym. Sci. 1993;50:1169–1177. doi: 10.1002/app.1993.070500707. DOI
Aral B.K., Kalyon D.M. Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspension. J. Rheol. 1994;38:957–972. doi: 10.1122/1.550537. DOI
Gulmus S.A., Yilmazer U. Effect of the surface roughness and construction material on wall slip in the flow of concentrated suspensions. J. Appl. Polym. Sci. 2006;103:3341–3347. doi: 10.1002/app.25468. DOI
Medhi B.J., Kumar A.A., Singh A. Apparent wall slip velocity measurement in free surface flow of concentrated suspensions. Int. J. Multiph. Flow. 2011;37:609–619. doi: 10.1016/j.ijmultiphaseflow.2011.03.006. DOI
Kalyon D.M. Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol. 2005;49:621–640. doi: 10.1122/1.1879043. DOI
Sanetrnik D., Hausnerova B., Filip P., Hnatkova E. Influence of capillary die geometry on wall slip of highly filled powder injection molding compounds. Powder Technol. 2018;325:615–619. doi: 10.1016/j.powtec.2017.11.041. DOI
Walter B.L., Pelteret J.P., Kaschta J., Schubert D.W., Steinmann P. On the wall slip phenomenon of elastomers in oscillatory shear measurement using parallel-plate rotational rheometry: II. Influence of experimental conditions. Polym. Test. 2017;61:455–463. doi: 10.1016/j.polymertesting.2017.05.036. DOI
Kwon T.H., Ahn S.Y. Slip characterization of powder/binder mixtures and its significance in the filling process analysis of powder injection molding. Powder Technol. 1995;85:45–55. doi: 10.1016/0032-5910(95)03001-P. DOI
Liu L., Ma Y.H., He Z.Y. Rheological behavior of zirconia feedstock flowing through various channels considering wall-slip. Ceram. Int. 2018;44:22387–22392. doi: 10.1016/j.ceramint.2018.09.003. DOI
Liu L., Gao Y.Y., Qi X.T., Qi M.X. Effect of wall slip on ZrO2 rheological behavior in micro powder injection molding. Ceram. Int. 2018;44:16282–16294. doi: 10.1016/j.ceramint.2018.06.022. DOI
Mooney M. Explicit formulas for slip and fluidity. J. Rheol. 1931;2:210–222. doi: 10.1122/1.2116364. DOI
Kalyon D., Gevgilili H., Kowalczyk J.E., Prickett S., Murphy C. Use of adjustable-gap on-line and off-line slit rheometers for the characterization of the wall slip and shear viscosity behavior of energetic formulations. J. Energ. Mater. 2006;24:175–193. doi: 10.1080/07370650600791080. DOI
Papanikolaou M., Frank M., Drikakis D. Effects of surface roughness on shear viscosity. Phys. Rev. E. 2017;95 doi: 10.1103/PhysRevE.95.033108. PubMed DOI
Jeong M., Kim Y., Zhou W., Tao W.Q., Ha M.Y. Effects of surface wettability, roughness and moving wall velocity on the Couette flow in nano-channel using multi-scale hybrid method. Comput. Fluids. 2017;147:1–11. doi: 10.1016/j.compfluid.2017.01.021. DOI
Hausnerova B., Bleyan D., Kasparkova V., Pata V. Surface adhesion between ceramic injection molding feedstocks and processing tools. Ceram. Int. 2016;2016 42:460–465. doi: 10.1016/j.ceramint.2015.08.132. DOI