Effect of Nanoparticles Surface Charge on the Arabidopsis thaliana (L.) Roots Development and Their Movement into the Root Cells and Protoplasts

. 2019 Apr 03 ; 20 (7) : . [epub] 20190403

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30987084

Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall may facilitate the internalization of various particles including NPs. Our studies have shown that AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.) roots. However, the research carried out with using light and transmission electron microscope revealed that AuNPs with different surface charge caused diverse changes in the root's histology and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged (-) AuNPs, which passage to the cell.

Zobrazit více v PubMed

Biswas P., Wu C.Y. Nanoparticles and the environment. J. Air Waste Manag. Assoc. 2005;55:708–746. doi: 10.1080/10473289.2005.10464656. PubMed DOI

Shukla P., Chaurasia P., Younis K., Qadri O.S., Faridi S.A., Srivastava G. Nanotechnology in sustainable agriculture: Studies from seed priming to post-harvest management. Nanotechnol. Environmen. Eng. 2019:4. doi: 10.1007/s41204-019-0058-2. DOI

Gottschalk F., Nowack B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011;13:1145–1155. doi: 10.1039/c0em00547a. PubMed DOI

Stark W.J. Nanoparticles in biological systems. Angew. Chem. 2011;50:1242–1258. doi: 10.1002/anie.200906684. PubMed DOI

Wang Z., Chen J., Li X., Shao J., Peijnenburg W.J. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion. Environ. Toxicol. Chem. 2012;31:2408–2413. doi: 10.1002/etc.1964. PubMed DOI

Zhang B., Zheng L.P., Wang J.W. Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl. Microbiol. Biotechnol. 2012;93:455–466. doi: 10.1007/s00253-011-3658-8. PubMed DOI

Judy J.D., Unrine J.M., Rao W., Bertsch P.M. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue. Environ. Sci. Technol. 2012;46:12672–12678. doi: 10.1021/es303333w. PubMed DOI

De la Torre Roche R., Servin A., Hawthorne J., Xing B., Newman L.A., Ma X., Chen G., White J.C. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ. Sci. Technol. 2015;49:11866–11874. doi: 10.1021/acs.est.5b02583. PubMed DOI

Tangaa S.R., Selck H., Winther-Nielsen M., Khan F.R. Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus. Environ. Sci. Nano. 2016;3:966–981. doi: 10.1039/C5EN00280J. DOI

Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011;59:3485–3498. doi: 10.1021/jf104517j. PubMed DOI PMC

Singh A., Singh N.B., Hussain I., Singh H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J. Biotechnol. 2017;262:11–27. doi: 10.1016/j.jbiotec.2017.09.016. PubMed DOI

Tripathi D.K., Singh V.P., Prasad S.M., Chauhan D.K., Dubey N.K. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol. Biochem. 2015;96:189–198. doi: 10.1016/j.plaphy.2015.07.026. PubMed DOI

Milewska-Hendel A., Gawecki R., Zubko M., Stróż D., Kurczyńska E. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobot. 2016;69 doi: 10.5586/aa.1694. DOI

Milewska-Hendel A., Zubko M., Karcz J., Stroz D., Kurczynska E. Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci. Rep. 2017;7:3014. doi: 10.1038/s41598-017-02965-w. PubMed DOI PMC

Tripathi D.K., Shweta, Singh S., Singh S., Pandey R., Singh V.P., Sharma N.C., Prasad S.M., Dubey N.K., Chauhan D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant. Physiol. Biochem. 2017;110:2–12. doi: 10.1016/j.plaphy.2016.07.030. PubMed DOI

Yin L., Cheng Y., Espinasse B., Colman B.P., Auffan M., Wiesner M., Rose J., Liu J., Bernhardt E.S. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 2011;45:2360–2367. doi: 10.1021/es103995x. PubMed DOI

Judy J.D., Unrine J.M., Bertsch P.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 2011;45:776–781. doi: 10.1021/es103031a. PubMed DOI

Mirzajani F., Askari H., Hamzelou S., Farzaneh M., Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf. 2013;88:48–54. doi: 10.1016/j.ecoenv.2012.10.018. PubMed DOI

Rastogi A., Zivcak M., Sytar O., Kalaji H.M., He X., Mbarki S., Brestic M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017;5:78. doi: 10.3389/fchem.2017.00078. PubMed DOI PMC

Zhu Z.J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 2012;46:12391–12398. doi: 10.1021/es301977w. PubMed DOI

Li H., Ye X., Guo X., Geng Z., Wang G. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J. Hazard. Mater. 2016;314:188–196. doi: 10.1016/j.jhazmat.2016.04.043. PubMed DOI

Wang J., Yang Y., Zhu H., Braam J., Schnoor J.L., Alvarez P.J. Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides x nigra cuttings. Environ. Sci. Technol. 2014;48:6754–6762. doi: 10.1021/es501425r. PubMed DOI

Carpita N., Sabularse D., Montezinos D., Delmer D.P. Determination of the pore size of cell walls of living plant cells. Science. 1979;205:1144–1147. doi: 10.1126/science.205.4411.1144. PubMed DOI

Fleischer A., O’Neill M.A., Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 1999;121:829–838. doi: 10.1104/pp.121.3.829. PubMed DOI PMC

Sabo-Attwood T., Unrine J.M., Stone J.W., Murphy C.J., Ghoshroy S., Blom D., Bertsch P.M., Newman L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology. 2012;6:353–360. doi: 10.3109/17435390.2011.579631. PubMed DOI

Zemke-White W.L., Clements K.D., Harris P.J. Acid lysis of macroalgae by marine herbivorous fishes: Effects of acid pH on cell wall porosity. J. Exp. Mar. Biol. Ecol. 2000;245:57–68. doi: 10.1016/S0022-0981(99)00151-3. DOI

Fujino T., Itoh T. Changes in the three dimensional architecture of the cell wall during lignification of xylem cells in Eucalytus tereticornis. Holzforschung. 1998;52:111–116. doi: 10.1515/hfsg.1998.52.2.111. DOI

Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI

Kurepa J., Paunesku T., Vogt S., Arora H., Rabatic B.M., Lu J., Wanzer M.B., Woloschak G.E., Smalle J.A. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–2302. doi: 10.1021/nl903518f. PubMed DOI PMC

Machesky M.L., Andrade W.O., Rose A.W. Interactions of gold (III) chloride and elemental gold with peat-derived humic substances. Chem.Geol. 1992;102:53–71. doi: 10.1016/0009-2541(92)90146-V. DOI

Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119:71–84. PubMed

Yang L., Watts D.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 2005;158:122–132. doi: 10.1016/j.toxlet.2005.03.003. PubMed DOI

Riahi-Madvar A., Rezaee F., Jalali V. Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran. J. Plant Physiol. 2012;3:595–603. doi: 10.22034/ijpp.2012.540668. DOI

Lin D., Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008;42:5580–5585. doi: 10.1021/es800422x. PubMed DOI

Nair P.M., Chung I.M. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol. Trace. Elem. Res. 2014;162:342–352. doi: 10.1007/s12011-014-0106-5. PubMed DOI

Nair P.M., Chung I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. Int. 2014;21:12709–12722. doi: 10.1007/s11356-014-3210-3. PubMed DOI

da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2015;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI

Bombin S., LeFebvre M., Sherwood J., Xu Y., Bao Y., Ramonell K.M. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int. J. Mol. Sci. 2015;16:24174–24193. doi: 10.3390/ijms161024174. PubMed DOI PMC

Asgari F., Majd A., Jonoubi P., Najafi F. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.) Plant Physiol. Biochem. 2018;127:152–160. doi: 10.1016/j.plaphy.2018.03.021. PubMed DOI

Milewska-Hendel A., Witek W., Rypień A., Zubko M., Baranski R., Stróż D., Kurczyńska E.U. The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-41164-7. PubMed DOI PMC

Hanif M., Davies M.S. Effects of NaCl on meristen size and proximity of root hairs to the root tips in Secale cereale (cv. K2) and Triticum aestivum (cv. Chinese spring) Pak. J. Biol. Sci. 1998;1:15–18. doi: 10.3923/pjbs.1998.15.18. DOI

Lehotai N., Feigl G., Koos A., Molnar A., Ordog A., Peto A., Erdei L., Kolbert Z. Nitric oxide-cytokinin interplay influences selenite sensitivity in Arabidopsis. Plant Cell Rep. 2016;35:2181–2195. doi: 10.1007/s00299-016-2028-5. PubMed DOI

Barlow P.W., Rathfelder E.L. Distribution and redistribution of extension growth along vertical and horizontal gravireacting maize roots. Planta. 1985;165:134–141. doi: 10.1007/BF00392222. PubMed DOI

Yuan T.T., Xu H.H., Zhang K.X., Guo T.T., Lu Y.T. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ. 2014;37:1338–1350. doi: 10.1111/pce.12233. PubMed DOI

Ivanov V.B. Cellular basis of root growth. Sov. Sci. Rev. 1981;2:365–392.

Powell M.J., Davies M.S., Francis D. Effects of zinc on meristem size and proximity of root hairs and xylem elements to the root tip in a zinc-tolerant and a non-tolerant cultivar of Festuca rubra L. Ann. Bot. 1988;61:723–726. doi: 10.1093/oxfordjournals.aob.a087610. DOI

Davies K.L., Davies M.S., Francis D. The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol. 1991;118:565. doi: 10.1111/j.1469-8137.1991.tb00997.x. DOI

Yuan H.M., Huang X. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 2016;39:120–135. doi: 10.1111/pce.12597. PubMed DOI

Sanchez-Calderon L., Lopez-Bucio J., Chacon-Lopez A., Cruz-Ramirez A., Nieto-Jacobo F., Dubrovsky J.G., Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005;46:174–184. doi: 10.1093/pcp/pci011. PubMed DOI

Yuan H.M., Xu H.H., Liu W.C., Lu Y.T. Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol. 2013;54:766–778. doi: 10.1093/pcp/pct030. PubMed DOI

Nair P.M.G., Chung I.M. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci. Total Environ. 2017;575:187–198. doi: 10.1016/j.scitotenv.2016.10.017. PubMed DOI

Yang K.Y., Doxey S., McLean J.E., Britt D., Watson A., Al Qassy D., Jacobson A., Anderson A.J. Remodeling of root morphology by CuO and ZnO nanoparticles: Effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany. 2017;96:175–186. doi: 10.1139/cjb-2017-0124. DOI

Vitti A., Nuzzaci M., Scopa A., Tarranni G., Tambarino I., Sofo A. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals. Int. J. Plant Biol. 2014;5:16–21. doi: 10.4081/pb.2014.5226. DOI

Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE. 2013;8:e68752. doi: 10.1371/journal.pone.0068752. PubMed DOI PMC

Sresty T.V.S., Madhava Rao K.V. Ultrastructural alterations in response to zinc and nickel stress in the root cell of pigeonpea. Environ. Exp. Bot. 1999;41:3–13. doi: 10.1016/S0098-8472(98)00034-3. DOI

Schier G.A., McQuattie C.J. Effect of aluminum on growth, anatomy, and nutrient content of ectomycorrhizal nd nonmycorrhizal eastern white pine seedlings. Can. J. For. Res. 1995;25:1252–1262. doi: 10.1139/x95-138. DOI

Liu D., Kottke I. Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS) Bioresour. Technol. 2004;94:153–158. doi: 10.1016/j.biortech.2003.12.003. PubMed DOI

Du W., Gardea-Torresdey J.L., Ji R., Yin Y., Zhu J., Peralta-Videa J.R., Guo H. Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: A life cycle field study. Environ. Sci. Technol. 2015;49:11884–11893. doi: 10.1021/acs.est.5b03055. PubMed DOI

Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: Anatomical and ultrastructural responses. Environ. Sci. Pollut. Res. Int. 2015;22:10733–10743. doi: 10.1007/s11356-015-4306-0. PubMed DOI

Peng C., Zhang H., Fang H., Xu C., Huang H., Wang Y., Sun L., Yuan X., Chen Y., Shi J. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ. Toxicol. Chem. 2015;34:1996–2003. doi: 10.1002/etc.3016. PubMed DOI

Marchiol L., Mattiello A., Poscic F., Giordano C., Musetti R. In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014;9:101. doi: 10.1186/1556-276X-9-101. PubMed DOI PMC

Paiva E.A. How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann. Bot. 2016;117:533–540. doi: 10.1093/aob/mcw012. PubMed DOI PMC

Bussotti F., Agati G., Desotgiu R., Matteini P., Tani C. Ozone foliar symptoms in woody plant species assessed with ultrastructural and fluorescence analysis. New Phytol. 2005;166:941–955. doi: 10.1111/j.1469-8137.2005.01385.x. PubMed DOI

Le Gall H., Philippe F., Domon J.M., Gillet F., Pelloux J., Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4:112–166. doi: 10.3390/plants4010112. PubMed DOI PMC

Ikeda C., Tadano T. Ultrastructural changes of the root tip cells in barley induced by a comparatively low concentration of aluminum. J. Soil Sci. Plant. Nutr. 1993;39:109–117. doi: 10.1080/00380768.1993.10416980. DOI

Kopittke P.M., Asher C.J., Blamey F.P., Auchterlonie G.J., Guo Y.N., Menzies N.W. Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana) Environ. Sci. Technol. 2008;42:4595–4599. doi: 10.1021/es702627c. PubMed DOI

Krzesłowska M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2010;33:35–51. doi: 10.1007/s11738-010-0581-z. DOI

Probst A., Liu H., Fanjul M., Liao B., Hollande E. Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and rooy. Environ. Exp. Bot. 2009;66:297–308. doi: 10.1016/j.envexpbot.2009.02.003. DOI

Meychik N.R., Yermakov I.P. Swelling of root cell walls as an indicator of their functional state. Biochem. Biokhimiia. 2001;66:178–187. doi: 10.1023/A:1002843615188. PubMed DOI

Spielman-Sun E., Lombi E., Donner E., Howard D., Unrine J.M., Lowry G.V. Impact of Surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum) Environ. Sci. Technol. 2017;51:7361–7368. doi: 10.1021/acs.est.7b00813. PubMed DOI

Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 2014;33:481–492. doi: 10.1002/etc.2470. PubMed DOI

Nowak J.S., Mehn D., Nativo P., Garcia C.P., Gioria S., Ojea-Jimenez I., Gilliland D., Rossi F. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol. Lett. 2014;224:84–92. doi: 10.1016/j.toxlet.2013.10.003. PubMed DOI

Clift M.J., Rothen-Rutishauser B., Brown D.M., Duffin R., Donaldson K., Proudfoot L., Guy K., Stone V. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 2008;232:418–427. doi: 10.1016/j.taap.2008.06.009. PubMed DOI

Benyettou F., Hardouin J., Lecouvey M., Jouni H., Mottle L. PEGylated Versus Non-PEGylated γ Fe2O3@Alendronate Nanoparticles. J. Bioanal. Biomed. 2012;4 doi: 10.4172/1948-593X.1000062.. DOI

Zahr A.S., Davis C.A., Pishko M.V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol) Langmuir. 2006;22:8178–8185. doi: 10.1021/la060951b. PubMed DOI

He C., Hu Y., Yin L., Tang C., Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI

Lorenz M.R., Holzapfel V., Musyanovych A., Nothelfer K., Walther P., Frank H., Landfester K., Schrezenmeier H., Mailander V. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 2006;27:2820–2828. doi: 10.1016/j.biomaterials.2005.12.022. PubMed DOI

Schwab F., Zhai G., Kern M., Turner A., Schnoor J.L., Wiesner M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology. 2016;10:257–278. doi: 10.3109/17435390.2015.1048326. PubMed DOI

Samaj J., Baluska F., Voigt B., Schlicht M., Volkmann D., Menzel D. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 2004;135:1150–1161. doi: 10.1104/pp.104.040683. PubMed DOI PMC

Samaj J., Read N.D., Volkmann D., Menzel D., Baluska F. The endocytic network in plants. Trends Cell Biol. 2005;15:425–433. doi: 10.1016/j.tcb.2005.06.006. PubMed DOI

Etxeberria E., Gonzalez P., Baroja-Fernandez E., Romero J.P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: Evidence for the distribution of solutes to different intracellular compartments. Plant. Signal. Behav. 2006;1:196–200. doi: 10.4161/psb.1.4.3142. PubMed DOI PMC

Onelli E., Prescianotto-Baschong C., Caccianiga M., Moscatelli A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot. 2008;59:3051–3068. doi: 10.1093/jxb/ern154. PubMed DOI PMC

Torney F., Trewyn B.G., Lin V.S., Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007;2:295–300. doi: 10.1038/nnano.2007.108. PubMed DOI

Serag M.F., Kaji N., Gaillard C., Okamoto Y., Terasaka K., Jabasini M., Tokeshi M., Mizukami H., Bianco A., Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5:493–499. doi: 10.1021/nn102344t. PubMed DOI

Tocquin P., Corbesier L., Havelange A., Pieltain A., Kurtem E., Bernier G., Périlleux C. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol. 2003;3:2. doi: 10.1186/1471-2229-3-2. PubMed DOI PMC

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962;15:473–479. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Wu S., Baskin T.I., Gallagher K.L. Mechanical fixation techniques for processing and orienting delicate samples, such as the root of Arabidopsis thaliana, for light or electron microscopy. Nat. Protoc. 2012;17:1113–1124. doi: 10.1038/nprot.2012.056. PubMed DOI

Damm B., Willmitzer L. Regeneration of fertile plants from protoplasts of different Arabidopsis thaliana genotypes. Mol. Gen. Genet. 1988;213:15–20. doi: 10.1007/BF00333392. DOI

Yoo S.D., Cho Y.H., Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007;2:1565–1572. doi: 10.1038/nprot.2007.199. PubMed DOI

Grzebelus E., Szklarczyk M., Baranski R. An improved protocol for plant regeneration from leaf and hypocotyl-derived protoplasts of carrot. Plant. Cell Tissue Organ. Cult. 2012;109:101–109. doi: 10.1007/s11240-011-0078-5. DOI

Anthony P., Davey M.R., Power J.B., Lowe K.C. Enhanced mitotic division of cultured Passiflora and Petunia protoplastsby oxygenated perfluorocarbon and haemoglobin. Biotechnol. Tech. 1997;11:581–584. doi: 10.1023/A:1018447007628. DOI

Skálová D., Ondřej V., Doležalová I., Navrátilová B., Lebeda A. Polyploidization facilitates biotechnological in vitro techniques in the genus Cucumis. BioMed Res. Int. 2010;2010 doi: 10.1155/2010/475432. PubMed DOI PMC

Ioio R.D., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P., Sabatini S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels

. 2022 Jan 25 ; 11 (3) : . [epub] 20220125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...