Effect of Nanoparticles Surface Charge on the Arabidopsis thaliana (L.) Roots Development and Their Movement into the Root Cells and Protoplasts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30987084
PubMed Central
PMC6479287
DOI
10.3390/ijms20071650
PII: ijms20071650
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, gold nanoparticles, protoplasts, root development, root meristem, ultrastructure,
- MeSH
- Arabidopsis cytologie růst a vývoj ultrastruktura MeSH
- buněčná stěna metabolismus MeSH
- kořeny rostlin cytologie růst a vývoj ultrastruktura MeSH
- kovové nanočástice chemie ultrastruktura MeSH
- povrchové vlastnosti MeSH
- protoplasty cytologie metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall may facilitate the internalization of various particles including NPs. Our studies have shown that AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.) roots. However, the research carried out with using light and transmission electron microscope revealed that AuNPs with different surface charge caused diverse changes in the root's histology and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged (-) AuNPs, which passage to the cell.
Zobrazit více v PubMed
Biswas P., Wu C.Y. Nanoparticles and the environment. J. Air Waste Manag. Assoc. 2005;55:708–746. doi: 10.1080/10473289.2005.10464656. PubMed DOI
Shukla P., Chaurasia P., Younis K., Qadri O.S., Faridi S.A., Srivastava G. Nanotechnology in sustainable agriculture: Studies from seed priming to post-harvest management. Nanotechnol. Environmen. Eng. 2019:4. doi: 10.1007/s41204-019-0058-2. DOI
Gottschalk F., Nowack B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011;13:1145–1155. doi: 10.1039/c0em00547a. PubMed DOI
Stark W.J. Nanoparticles in biological systems. Angew. Chem. 2011;50:1242–1258. doi: 10.1002/anie.200906684. PubMed DOI
Wang Z., Chen J., Li X., Shao J., Peijnenburg W.J. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion. Environ. Toxicol. Chem. 2012;31:2408–2413. doi: 10.1002/etc.1964. PubMed DOI
Zhang B., Zheng L.P., Wang J.W. Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl. Microbiol. Biotechnol. 2012;93:455–466. doi: 10.1007/s00253-011-3658-8. PubMed DOI
Judy J.D., Unrine J.M., Rao W., Bertsch P.M. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue. Environ. Sci. Technol. 2012;46:12672–12678. doi: 10.1021/es303333w. PubMed DOI
De la Torre Roche R., Servin A., Hawthorne J., Xing B., Newman L.A., Ma X., Chen G., White J.C. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ. Sci. Technol. 2015;49:11866–11874. doi: 10.1021/acs.est.5b02583. PubMed DOI
Tangaa S.R., Selck H., Winther-Nielsen M., Khan F.R. Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus. Environ. Sci. Nano. 2016;3:966–981. doi: 10.1039/C5EN00280J. DOI
Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011;59:3485–3498. doi: 10.1021/jf104517j. PubMed DOI PMC
Singh A., Singh N.B., Hussain I., Singh H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J. Biotechnol. 2017;262:11–27. doi: 10.1016/j.jbiotec.2017.09.016. PubMed DOI
Tripathi D.K., Singh V.P., Prasad S.M., Chauhan D.K., Dubey N.K. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol. Biochem. 2015;96:189–198. doi: 10.1016/j.plaphy.2015.07.026. PubMed DOI
Milewska-Hendel A., Gawecki R., Zubko M., Stróż D., Kurczyńska E. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobot. 2016;69 doi: 10.5586/aa.1694. DOI
Milewska-Hendel A., Zubko M., Karcz J., Stroz D., Kurczynska E. Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci. Rep. 2017;7:3014. doi: 10.1038/s41598-017-02965-w. PubMed DOI PMC
Tripathi D.K., Shweta, Singh S., Singh S., Pandey R., Singh V.P., Sharma N.C., Prasad S.M., Dubey N.K., Chauhan D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant. Physiol. Biochem. 2017;110:2–12. doi: 10.1016/j.plaphy.2016.07.030. PubMed DOI
Yin L., Cheng Y., Espinasse B., Colman B.P., Auffan M., Wiesner M., Rose J., Liu J., Bernhardt E.S. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 2011;45:2360–2367. doi: 10.1021/es103995x. PubMed DOI
Judy J.D., Unrine J.M., Bertsch P.M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 2011;45:776–781. doi: 10.1021/es103031a. PubMed DOI
Mirzajani F., Askari H., Hamzelou S., Farzaneh M., Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf. 2013;88:48–54. doi: 10.1016/j.ecoenv.2012.10.018. PubMed DOI
Rastogi A., Zivcak M., Sytar O., Kalaji H.M., He X., Mbarki S., Brestic M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017;5:78. doi: 10.3389/fchem.2017.00078. PubMed DOI PMC
Zhu Z.J., Wang H., Yan B., Zheng H., Jiang Y., Miranda O.R., Rotello V.M., Xing B., Vachet R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 2012;46:12391–12398. doi: 10.1021/es301977w. PubMed DOI
Li H., Ye X., Guo X., Geng Z., Wang G. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J. Hazard. Mater. 2016;314:188–196. doi: 10.1016/j.jhazmat.2016.04.043. PubMed DOI
Wang J., Yang Y., Zhu H., Braam J., Schnoor J.L., Alvarez P.J. Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides x nigra cuttings. Environ. Sci. Technol. 2014;48:6754–6762. doi: 10.1021/es501425r. PubMed DOI
Carpita N., Sabularse D., Montezinos D., Delmer D.P. Determination of the pore size of cell walls of living plant cells. Science. 1979;205:1144–1147. doi: 10.1126/science.205.4411.1144. PubMed DOI
Fleischer A., O’Neill M.A., Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 1999;121:829–838. doi: 10.1104/pp.121.3.829. PubMed DOI PMC
Sabo-Attwood T., Unrine J.M., Stone J.W., Murphy C.J., Ghoshroy S., Blom D., Bertsch P.M., Newman L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology. 2012;6:353–360. doi: 10.3109/17435390.2011.579631. PubMed DOI
Zemke-White W.L., Clements K.D., Harris P.J. Acid lysis of macroalgae by marine herbivorous fishes: Effects of acid pH on cell wall porosity. J. Exp. Mar. Biol. Ecol. 2000;245:57–68. doi: 10.1016/S0022-0981(99)00151-3. DOI
Fujino T., Itoh T. Changes in the three dimensional architecture of the cell wall during lignification of xylem cells in Eucalytus tereticornis. Holzforschung. 1998;52:111–116. doi: 10.1515/hfsg.1998.52.2.111. DOI
Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI
Kurepa J., Paunesku T., Vogt S., Arora H., Rabatic B.M., Lu J., Wanzer M.B., Woloschak G.E., Smalle J.A. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–2302. doi: 10.1021/nl903518f. PubMed DOI PMC
Machesky M.L., Andrade W.O., Rose A.W. Interactions of gold (III) chloride and elemental gold with peat-derived humic substances. Chem.Geol. 1992;102:53–71. doi: 10.1016/0009-2541(92)90146-V. DOI
Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119:71–84. PubMed
Yang L., Watts D.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 2005;158:122–132. doi: 10.1016/j.toxlet.2005.03.003. PubMed DOI
Riahi-Madvar A., Rezaee F., Jalali V. Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran. J. Plant Physiol. 2012;3:595–603. doi: 10.22034/ijpp.2012.540668. DOI
Lin D., Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008;42:5580–5585. doi: 10.1021/es800422x. PubMed DOI
Nair P.M., Chung I.M. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol. Trace. Elem. Res. 2014;162:342–352. doi: 10.1007/s12011-014-0106-5. PubMed DOI
Nair P.M., Chung I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. Int. 2014;21:12709–12722. doi: 10.1007/s11356-014-3210-3. PubMed DOI
da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2015;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI
Bombin S., LeFebvre M., Sherwood J., Xu Y., Bao Y., Ramonell K.M. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int. J. Mol. Sci. 2015;16:24174–24193. doi: 10.3390/ijms161024174. PubMed DOI PMC
Asgari F., Majd A., Jonoubi P., Najafi F. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.) Plant Physiol. Biochem. 2018;127:152–160. doi: 10.1016/j.plaphy.2018.03.021. PubMed DOI
Milewska-Hendel A., Witek W., Rypień A., Zubko M., Baranski R., Stróż D., Kurczyńska E.U. The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-41164-7. PubMed DOI PMC
Hanif M., Davies M.S. Effects of NaCl on meristen size and proximity of root hairs to the root tips in Secale cereale (cv. K2) and Triticum aestivum (cv. Chinese spring) Pak. J. Biol. Sci. 1998;1:15–18. doi: 10.3923/pjbs.1998.15.18. DOI
Lehotai N., Feigl G., Koos A., Molnar A., Ordog A., Peto A., Erdei L., Kolbert Z. Nitric oxide-cytokinin interplay influences selenite sensitivity in Arabidopsis. Plant Cell Rep. 2016;35:2181–2195. doi: 10.1007/s00299-016-2028-5. PubMed DOI
Barlow P.W., Rathfelder E.L. Distribution and redistribution of extension growth along vertical and horizontal gravireacting maize roots. Planta. 1985;165:134–141. doi: 10.1007/BF00392222. PubMed DOI
Yuan T.T., Xu H.H., Zhang K.X., Guo T.T., Lu Y.T. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ. 2014;37:1338–1350. doi: 10.1111/pce.12233. PubMed DOI
Ivanov V.B. Cellular basis of root growth. Sov. Sci. Rev. 1981;2:365–392.
Powell M.J., Davies M.S., Francis D. Effects of zinc on meristem size and proximity of root hairs and xylem elements to the root tip in a zinc-tolerant and a non-tolerant cultivar of Festuca rubra L. Ann. Bot. 1988;61:723–726. doi: 10.1093/oxfordjournals.aob.a087610. DOI
Davies K.L., Davies M.S., Francis D. The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol. 1991;118:565. doi: 10.1111/j.1469-8137.1991.tb00997.x. DOI
Yuan H.M., Huang X. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 2016;39:120–135. doi: 10.1111/pce.12597. PubMed DOI
Sanchez-Calderon L., Lopez-Bucio J., Chacon-Lopez A., Cruz-Ramirez A., Nieto-Jacobo F., Dubrovsky J.G., Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005;46:174–184. doi: 10.1093/pcp/pci011. PubMed DOI
Yuan H.M., Xu H.H., Liu W.C., Lu Y.T. Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol. 2013;54:766–778. doi: 10.1093/pcp/pct030. PubMed DOI
Nair P.M.G., Chung I.M. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci. Total Environ. 2017;575:187–198. doi: 10.1016/j.scitotenv.2016.10.017. PubMed DOI
Yang K.Y., Doxey S., McLean J.E., Britt D., Watson A., Al Qassy D., Jacobson A., Anderson A.J. Remodeling of root morphology by CuO and ZnO nanoparticles: Effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany. 2017;96:175–186. doi: 10.1139/cjb-2017-0124. DOI
Vitti A., Nuzzaci M., Scopa A., Tarranni G., Tambarino I., Sofo A. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals. Int. J. Plant Biol. 2014;5:16–21. doi: 10.4081/pb.2014.5226. DOI
Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE. 2013;8:e68752. doi: 10.1371/journal.pone.0068752. PubMed DOI PMC
Sresty T.V.S., Madhava Rao K.V. Ultrastructural alterations in response to zinc and nickel stress in the root cell of pigeonpea. Environ. Exp. Bot. 1999;41:3–13. doi: 10.1016/S0098-8472(98)00034-3. DOI
Schier G.A., McQuattie C.J. Effect of aluminum on growth, anatomy, and nutrient content of ectomycorrhizal nd nonmycorrhizal eastern white pine seedlings. Can. J. For. Res. 1995;25:1252–1262. doi: 10.1139/x95-138. DOI
Liu D., Kottke I. Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS) Bioresour. Technol. 2004;94:153–158. doi: 10.1016/j.biortech.2003.12.003. PubMed DOI
Du W., Gardea-Torresdey J.L., Ji R., Yin Y., Zhu J., Peralta-Videa J.R., Guo H. Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: A life cycle field study. Environ. Sci. Technol. 2015;49:11884–11893. doi: 10.1021/acs.est.5b03055. PubMed DOI
Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: Anatomical and ultrastructural responses. Environ. Sci. Pollut. Res. Int. 2015;22:10733–10743. doi: 10.1007/s11356-015-4306-0. PubMed DOI
Peng C., Zhang H., Fang H., Xu C., Huang H., Wang Y., Sun L., Yuan X., Chen Y., Shi J. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ. Toxicol. Chem. 2015;34:1996–2003. doi: 10.1002/etc.3016. PubMed DOI
Marchiol L., Mattiello A., Poscic F., Giordano C., Musetti R. In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014;9:101. doi: 10.1186/1556-276X-9-101. PubMed DOI PMC
Paiva E.A. How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann. Bot. 2016;117:533–540. doi: 10.1093/aob/mcw012. PubMed DOI PMC
Bussotti F., Agati G., Desotgiu R., Matteini P., Tani C. Ozone foliar symptoms in woody plant species assessed with ultrastructural and fluorescence analysis. New Phytol. 2005;166:941–955. doi: 10.1111/j.1469-8137.2005.01385.x. PubMed DOI
Le Gall H., Philippe F., Domon J.M., Gillet F., Pelloux J., Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4:112–166. doi: 10.3390/plants4010112. PubMed DOI PMC
Ikeda C., Tadano T. Ultrastructural changes of the root tip cells in barley induced by a comparatively low concentration of aluminum. J. Soil Sci. Plant. Nutr. 1993;39:109–117. doi: 10.1080/00380768.1993.10416980. DOI
Kopittke P.M., Asher C.J., Blamey F.P., Auchterlonie G.J., Guo Y.N., Menzies N.W. Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana) Environ. Sci. Technol. 2008;42:4595–4599. doi: 10.1021/es702627c. PubMed DOI
Krzesłowska M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2010;33:35–51. doi: 10.1007/s11738-010-0581-z. DOI
Probst A., Liu H., Fanjul M., Liao B., Hollande E. Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and rooy. Environ. Exp. Bot. 2009;66:297–308. doi: 10.1016/j.envexpbot.2009.02.003. DOI
Meychik N.R., Yermakov I.P. Swelling of root cell walls as an indicator of their functional state. Biochem. Biokhimiia. 2001;66:178–187. doi: 10.1023/A:1002843615188. PubMed DOI
Spielman-Sun E., Lombi E., Donner E., Howard D., Unrine J.M., Lowry G.V. Impact of Surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum) Environ. Sci. Technol. 2017;51:7361–7368. doi: 10.1021/acs.est.7b00813. PubMed DOI
Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 2014;33:481–492. doi: 10.1002/etc.2470. PubMed DOI
Nowak J.S., Mehn D., Nativo P., Garcia C.P., Gioria S., Ojea-Jimenez I., Gilliland D., Rossi F. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol. Lett. 2014;224:84–92. doi: 10.1016/j.toxlet.2013.10.003. PubMed DOI
Clift M.J., Rothen-Rutishauser B., Brown D.M., Duffin R., Donaldson K., Proudfoot L., Guy K., Stone V. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 2008;232:418–427. doi: 10.1016/j.taap.2008.06.009. PubMed DOI
Benyettou F., Hardouin J., Lecouvey M., Jouni H., Mottle L. PEGylated Versus Non-PEGylated γ Fe2O3@Alendronate Nanoparticles. J. Bioanal. Biomed. 2012;4 doi: 10.4172/1948-593X.1000062.. DOI
Zahr A.S., Davis C.A., Pishko M.V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol) Langmuir. 2006;22:8178–8185. doi: 10.1021/la060951b. PubMed DOI
He C., Hu Y., Yin L., Tang C., Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI
Lorenz M.R., Holzapfel V., Musyanovych A., Nothelfer K., Walther P., Frank H., Landfester K., Schrezenmeier H., Mailander V. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 2006;27:2820–2828. doi: 10.1016/j.biomaterials.2005.12.022. PubMed DOI
Schwab F., Zhai G., Kern M., Turner A., Schnoor J.L., Wiesner M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology. 2016;10:257–278. doi: 10.3109/17435390.2015.1048326. PubMed DOI
Samaj J., Baluska F., Voigt B., Schlicht M., Volkmann D., Menzel D. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 2004;135:1150–1161. doi: 10.1104/pp.104.040683. PubMed DOI PMC
Samaj J., Read N.D., Volkmann D., Menzel D., Baluska F. The endocytic network in plants. Trends Cell Biol. 2005;15:425–433. doi: 10.1016/j.tcb.2005.06.006. PubMed DOI
Etxeberria E., Gonzalez P., Baroja-Fernandez E., Romero J.P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: Evidence for the distribution of solutes to different intracellular compartments. Plant. Signal. Behav. 2006;1:196–200. doi: 10.4161/psb.1.4.3142. PubMed DOI PMC
Onelli E., Prescianotto-Baschong C., Caccianiga M., Moscatelli A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot. 2008;59:3051–3068. doi: 10.1093/jxb/ern154. PubMed DOI PMC
Torney F., Trewyn B.G., Lin V.S., Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007;2:295–300. doi: 10.1038/nnano.2007.108. PubMed DOI
Serag M.F., Kaji N., Gaillard C., Okamoto Y., Terasaka K., Jabasini M., Tokeshi M., Mizukami H., Bianco A., Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5:493–499. doi: 10.1021/nn102344t. PubMed DOI
Tocquin P., Corbesier L., Havelange A., Pieltain A., Kurtem E., Bernier G., Périlleux C. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol. 2003;3:2. doi: 10.1186/1471-2229-3-2. PubMed DOI PMC
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962;15:473–479. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Wu S., Baskin T.I., Gallagher K.L. Mechanical fixation techniques for processing and orienting delicate samples, such as the root of Arabidopsis thaliana, for light or electron microscopy. Nat. Protoc. 2012;17:1113–1124. doi: 10.1038/nprot.2012.056. PubMed DOI
Damm B., Willmitzer L. Regeneration of fertile plants from protoplasts of different Arabidopsis thaliana genotypes. Mol. Gen. Genet. 1988;213:15–20. doi: 10.1007/BF00333392. DOI
Yoo S.D., Cho Y.H., Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007;2:1565–1572. doi: 10.1038/nprot.2007.199. PubMed DOI
Grzebelus E., Szklarczyk M., Baranski R. An improved protocol for plant regeneration from leaf and hypocotyl-derived protoplasts of carrot. Plant. Cell Tissue Organ. Cult. 2012;109:101–109. doi: 10.1007/s11240-011-0078-5. DOI
Anthony P., Davey M.R., Power J.B., Lowe K.C. Enhanced mitotic division of cultured Passiflora and Petunia protoplastsby oxygenated perfluorocarbon and haemoglobin. Biotechnol. Tech. 1997;11:581–584. doi: 10.1023/A:1018447007628. DOI
Skálová D., Ondřej V., Doležalová I., Navrátilová B., Lebeda A. Polyploidization facilitates biotechnological in vitro techniques in the genus Cucumis. BioMed Res. Int. 2010;2010 doi: 10.1155/2010/475432. PubMed DOI PMC
Ioio R.D., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P., Sabatini S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. PubMed DOI
Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels