Evolutionary history of burrowing asps (Lamprophiidae: Atractaspidinae) with emphasis on fang evolution and prey selection
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
G12 MD007592
NIMHD NIH HHS - United States
PubMed
30995262
PubMed Central
PMC6469773
DOI
10.1371/journal.pone.0214889
PII: PONE-D-19-03110
Knihovny.cz E-resources
- MeSH
- Animal Structures anatomy & histology physiology MeSH
- Time Factors MeSH
- Cytochromes b genetics MeSH
- Phylogeny MeSH
- Genes, mos MeSH
- Genes, RAG-1 MeSH
- Genes, Mitochondrial MeSH
- Evolution, Molecular MeSH
- NADH Dehydrogenase genetics MeSH
- Predatory Behavior MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Viperidae classification genetics physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Cytochromes b MeSH
- NADH Dehydrogenase MeSH
- RNA, Ribosomal, 16S MeSH
Atractaspidines are poorly studied, fossorial snakes that are found throughout Africa and western Asia, including the Middle East. We employed concatenated gene-tree analyses and divergence dating approaches to investigate evolutionary relationships and biogeographic patterns of atractaspidines with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). We sampled 91 individuals from both atractaspidine genera (Atractaspis and Homoroselaps). Additionally, we used ancestral-state reconstructions to investigate fang and diet evolution within Atractaspidinae and its sister lineage (Aparallactinae). Our results indicated that current classification of atractaspidines underestimates diversity within the group. Diversification occurred predominantly between the Miocene and Pliocene. Ancestral-state reconstructions suggest that snake dentition in these taxa might be highly plastic within relatively short periods of time to facilitate adaptations to dynamic foraging and life-history strategies.
Department of Biology Villanova University Villanova Pennsylvania United States of America
Department of Biology Whitman College Walla Walla Washington United States of America
Department of Environmental Sciences Makerere University Kampala Uganda
Department of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg Germany
Department of Zoology Nelson Mandela University Port Elizabeth South Africa
Flora Fauna and Man Ecological Services Ltd Tortola British Virgin Islands
Florida Museum of Natural History University of Florida Gainesville Florida United States of America
Independent Researcher Berlin Germany
Independent Researcher Dříteč Czech Republic
Institut National de Recherche en Sciences Exactes et Naturelles Brazzaville Republic of Congo
Museo di Storia naturale del Salento Calimera Italy
Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
Port Elizabeth Museum Humewood South Africa
School of Natural Resource Management George Campus Nelson Mandela University George South Africa
See more in PubMed
Wüster W, Crookes S, Ineich I, Mané Y, Pook CE, Trape J-F, et al. The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol. Phylogenet. Evol., 2007; 45: 437–453. 10.1016/j.ympev.2007.07.021 PubMed DOI
Kelly CMR, Branch WR, Broadley DG, Barker NP, Villet MH. Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol. Phylogenet. Evol., 2011; 58: 415–426. 10.1016/j.ympev.2010.11.010 PubMed DOI
Menegon M, Loader SP, Marsden SJ, Branch WR, Davenport TRB, Ursenbacher S. The genus Atheris (Serpentes: Viperidae) in East Africa: Phylogeny and the role of rifting and climate in shaping the current pattern of species diversity. Mol. Phylogenet. Evol., 2014; 79: 12–22. 10.1016/j.ympev.2014.06.007 PubMed DOI
Greenbaum E, Portillo F, Jackson K, Kusamba C. A phylogeny of Central African Boaedon (Serpentes: Lamprophiidae), with the description of a new cryptic species from the Albertine Rift. Afr. J. Herpetol., 2015; 64: 18–38. 10.1080/21564574.2014.996189 DOI
Wüster W, Chirio L, Trape J-F, Ineich I, Jackson K, Greenbaum E, et al. Integration of nuclear and mitochondrial gene sequences and morphology reveal unexpected diversity in the forest cobra (Naja melanoleuca) species complex in Central and West Africa (Serpentes: Elapidae). Zootaxa, 2018; 4455: 68–98. 10.11646/zootaxa.4455.1.3 PubMed DOI
Engelbrecht HM, Branch WR, Greenbaum E, Alexander GJ, Jackson K, Burger M, et al. Diversifying into the branches: Species boundaries in African green and bush snakes, Philothamnus (Serpentes: Colubridae). Mol. Phylogenet. Evol., 130: 357–365. 10.1016/j.ympev.2018.10.023 PubMed DOI
Kelly CMR, Barker NP, Villet MH, Broadley DG. Phylogeny, biogeography and classification of the snake superfamily Elapoidea: A rapid radiation in the late Eocene. Cladistics, 2009; 25: 38–63. 10.1111/j.1096-0031.2008.00237.x PubMed DOI
Pyron RA, Burbrink FT, Colli GR, De Oca ANM, Vitt LJ, Kuczynski CA, et al. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol. Phylogenet. Evol., 2011; 58: 329–342. 10.1016/j.ympev.2010.11.006 PubMed DOI
Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol., 2013; 13: 93 10.1186/1471-2148-13-93 PubMed DOI PMC
Moyer K, Jackson K. Phylogenetic relationships among the Stiletto Snakes (genus Atractaspis) based on external morphology. Afr. J. Herpetol., 2011; 60: 30–46. 10.1080/21564574.2010.520034 DOI
Günther ACLG. Catalogue of the Colubrine Snakes in the Collection of the British Museum. Trustees of the British Museum, London; 1858.
Vitt L. Caldwell JP. Herpetology: An Introductory Biology of Amphibians and Reptiles. 3rd Edition Academic Press, USA; 2009.
Bourgeois M. Contribution à la morphologie comparée du crâne des Ophidiens de l’Afrique Centrale. Publ. Univ. Off. Congo, 1986; XVIII: 1–293.
Heymans JC. La musculature mandibulaire et le groupe parotidien des Aparallactinae et Atractaspinae (Serpentes Colubridae) à majorité fouisseurs. Rev. Zool. Afr., 1975; 89: 889–905.
Heymans JC. Contribution a la phylogenèse des ophidiens de l’Afrique centrale. Ann. Soc. Royale Zool. Belgique, 1982; 112: 79–87.
Kelly CMR, Barker NP, Villet MR. Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Syst. Biol., 2003; 52: 439–459. 10.1080/10635150309313 PubMed DOI
McDowell SB. 1968. Affinities of the snakes usually called Elaps lacteus and E. dorsalis. J. Linn. Soc., Zoology, 1968; 47: 561–578. 10.1111/j.1096-3642.1968.tb00550h.x DOI
Underwood G, Kochva E. On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae). Zool. J. Linn. Soc., 1993; 107: 3–64. 10.1006/zjls.1993.1002 DOI
Vidal N, Hedges SB. Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes. C. R. Biol., 2002; 325: 987–995. 10.1016/S1631-0691(02)01509-3 PubMed DOI
Branch WR. Snakes of Angola: An annotated checklist. Amphib. Reptile Conserv., 2018; 12: 41–82.
Vidal N, Delmas AS, David P, Cruaud C, Couloux A, Hedges SB. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C. R. Biol., 2007; 330: 182–187. 10.1016/j.crvi.2006.10.001 PubMed DOI
Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, Wink M, et al. Dissecting the major African snake radiation: A molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia). Zootaxa, 2008; 1945: 51–66. 10.1016/j.crvi.2009.11.003 PubMed DOI
Vidal N, Hedges SB. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C. R. Biol., 2009; 332: 129–139. 10.1016/j.crvi.2008.07.010 PubMed DOI
Uetz, P, Freed P, Hošek J (eds.). The Reptile Database, http://www.reptile-database.org, [accessed March 2019]; 2019.
Greene HW. Snakes: The Evolution of Mystery in Nature. University of California Press, Berkeley; 1997.
Nagy ZT, Vidal N, Vences M, Branch WR, Pauwels OSG, Wink M, et al. Molecular systematics of African Colubroidea (Squamata: Serpentes) In Huber B.A., Sinclair B.J., and Lampe K.-H. (Eds.), African Biodiversity: Molecules, Organisms, Ecosystems. Proceedings of the 5th International Symposium in Tropical Biology; Museum Koenig, Bonn; 2005. Pp. 221–228.
Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP. A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE, 2016; 11: e0161070 10.1371/journal.pone.0161070 PubMed DOI PMC
Laurent RF. Révision du genre Atractaspis A. Smith. Mém. Mus. R. Hist. Nat. Belgique, 1950; 38: 1–49.
Branch WR. A Field Guide to the Snakes and Other Reptiles of Southern Africa, revised edition Struik Publishing, South Africa; 1998.
Marais J. A Complete Guide to the Snakes of Southern Africa. Struik Publishers, Cape Town; 2004.
Shine R, Branch WR, Harlow PS, Webb JK, Shine T. Biology of burrowing asps (Atractaspididae) from Southern Africa. Copeia, 2006; 2006: 103–115. 10.1643/0045-8511(2006)006[0103:BOBAAF]2.0.CO;2 DOI
Jackson TN, Young B, Underwood G, McCarthy CJ, Kochva E, Vidal N, et al. Endless forms most beautiful: The evolution of ophidian oral glands, including the venom system, and the use of appropriate terminology for homologous structures. Zoomorphology, 2017; 136: 1–24. 10.1007/s00435-016-0332-9 DOI
Deufel A, Cundall D. Feeding in Atractaspis (Serpentes: Atractaspididae): A study in conflicting functional constraints. Zoology, 2003; 106: 43–61. 10.1078/0944-2006-00088 PubMed DOI
Rödel M-O, Kucharzewski C, Mahlow K, Chirio L, Pauwels OSG, Carlino P, et al. A new stiletto snake (Lamprophiidae, Atractaspidinae, Atractaspis) from Liberia and Guinea, West Africa. Zoosyst. Evol., 2019; 95: 107–123.
Portillo F, Branch WR, Tilbury CR, Nagy ZT, Hughes DF, Kusamba C, et al. A cryptic new species of Polemon (Squamata: Lamprophiidae, Aparallactinae) from the miombo woodlands of Central and East Africa. Copeia, 2019; 107: 22–35. 10.1643/CH-18-098 DOI
Swindell SR, Plasterer TN. SEQMAN: Contig assembly. Method. Mol. Biol., 1997; 70: 75–89. 10.1385/0-89603-358-9:75 PubMed DOI
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 2004; 32: 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Maddison, WP, Maddison DR. Mesquite: A modular system for evolutionary analysis. Version 3.2 http://mesquiteproject.org; 2017.
Maddison DR, Maddison WP. MacClade: Analysis of Phylogeny and Character Evolution. Sinauer Associates Inc, USA; 2005. PubMed
Miller, MA, Pfeiffer W, Schwartz T. The CIPRES Science Gateway, Version 3.3 https://www.phylo.org; 2017.
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol., 2012; 29: 1695–1701. 10.1093/molbev/mss020 PubMed DOI
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol., 2014; 14: 82 10.1186/1471-2148-14-82 PubMed DOI PMC
Rambaut A, Drummond A. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, UK; 2010.
Head JJ, Mahlow K, Müller J. Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontol. Electronica, 2016; 19: 1–21.
Loveridge R. Further revisions of African snake genera. Bull. Mus. Comp. Zool. (Harvard), 1944; 95: 121–247.
Laurent RF. Contribution à la connaissance du genre Atractaspis Smith. Rev. Zool. Bot. Afr., 1945; 38: 312–343.
de Witte GF, Laurent RF. Révision d'un groupe de Colubridae africains: Genres Calamelaps, Miodon, Aparallactus, et formes affines. Mém. Mus. R. Hist. Nat. Belgique (sér. 2), 1947; 29: 1–134.
Wilson VJ. The snakes of the eastern province of Zambia. The Puku, 1965; 3: 149–170.
Broadley DG. A revision of the African snake genera Amblyodipsas and Xenocalamus. Occas. Pap. Nat. Hist. Mus. Rhodesia, 1971; 4: 629–697.
Pitman CRS. A Guide to the Snakes of Uganda. Wheldon and Wesley; Codicote, UK; 1974.
Hughes B. A rare snake not so rare: Polemon neuwiedi in Ghana. Nigerian Field, 1978; 43: 86–88.
Douglas RM. A new size record and notes on feeding in captivity of Amblyodipsas concolor (A. Smith). J. Herpetol. Assoc. Africa, 1982; 28: 14–16. 10.1080/04416651.1982.9650108 DOI
Spawls S, Howell K, Drewes R, Ashe J. A Field Guide to the Reptiles of East Africa: Kenya, Tanzania, Uganda, Rwanda and Burundi. Natural World, London, UK; 2002.
Spawls S, Howell K, Hinkel H, Menegon M. Field Guide to East African Reptiles. Bloomsbury Natural History, London, UK; 2018.
Gower DJ, Rasmussen JB, Loader SP, Wilkinson M. The caecilian amphibian Scolecomorphus kirkii Boulenger as prey of the burrowing asp Atractaspis aterrima Günther: Trophic relationships of fossorial vertebrates. Afr. J. Ecol., 2004; 42: 83–87. 10.1111/j.1365-2028.2004.00495.x DOI
Pagel M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol., 1999; 48: 612–622. 10.1080/106351599260184 DOI
Lewis PO. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol., 2001; 50: 913–925. 10.1080/106351501753462876 PubMed DOI
Wiens JJ. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol., 2003; 52: 528–538. 10.1080/10635150390218330 PubMed DOI
Wiens JJ, Morrill MC. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Syst. Biol., 2011; 60: 719–731. 10.1093/sysbio/syr025 PubMed DOI
Anderson CG, Greenbaum E. Phylogeography of northern populations of the black-tailed rattlesnake (Crotalus molossus Baird and Girard, 1853), with the revalidation of C. ornatus Hallowell, 1854. Herpetol. Monogr., 2012; 26: 19–57.
Jiang W, Chen SY, Wang H, Li DZ, Wiens JJ. Should genes with missing data be excluded from phylogenetic analyses? Mol. Phylogenet. Evol., 2014; 80: 308–318. 10.1016/j.ympev.2014.08.006 PubMed DOI
Portillo F, Branch WR, Conradie W, Rödel MO, Penner J, Barej M, et al. Phylogeny and biogeography of the African burrowing snake subfamily Aparallactinae (Squamata: Lamprophiidae). Mol. Phylogenet. Evol., 2018; 127: 288–303. 10.1016/j.ympev.2018.03.019 PubMed DOI
Amer SA, Kumazawa Y. Mitochondrial DNA sequences of the Afro-Arabian spiny-tailed lizards (genus Uromastyx; family Agamidae): Phylogenetic analyses and evolution of gene arrangements. Biol. J. Linn. Soc., 2005; 85: 247–260. 10.1111/j.1095-8312.2005.00485.x DOI
Pook CE, Joger U, Stümpel N, Wüster W. When continents collide: Phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: Viperidae). Mol. Phylogenet. Evol., 2009; 53: 792–807. 10.1016/j.ympev.2009.08.002 PubMed DOI
Metallinou M, Arnold NE, Crochet PA, Geniez P, Brito J, Lymberakis C, et al. Conquering the Sahara and Arabian deserts: Systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae). BMC Evol. Biol., 2012; 12: 258 10.1186/1471-2148-12-258 PubMed DOI PMC
Tamar K, Scholz S, Crochet PA, Geniez P, Meiri S, Schmitz A, et al. Evolution around the Red Sea: Systematics and biogeography of the agamid genus Pseudotrapelus (Squamata: Agamidae) from North Africa and Arabia. Mol. Phylogenet. Evol., 2016; 97: 55–68. 10.1016/j.ympev.2015.12.021 PubMed DOI
Kapli P, Lymberakis P, Crochet PA, Geniez P, Brito JC, Almutairi M, et al. Historical biogeography of the lacertid lizard Mesalina in North Africa and the Middle East. J. Biogeogr., 2014; 42: 267–279. 10.1111/jbi.12420 DOI
Šmíd J, Carranza S, Kratochvíl L, Gvoždík V, Nasher A, Moravec J. Out of Arabia: A complex biogeographic history of multiple vicariance and dispersal events in the gecko genus Hemidactylus (Reptilia: Gekkonidae). PLoS ONE, 2013; 8: e64018 10.1371/journal.pone.0064018 PubMed DOI PMC
Arnold EN, Robinson MD, Carranza S. A preliminary analysis of phylogenetic relationships and biogeography of the dangerously venomous Carpet Vipers, Echis (Squamata, Serpentes, Viperidae) based on mitochondrial DNA sequences. Amphibia-Reptilia, 2009; 30: 273–282.
Portik DM, Papenfuss TJ. Monitors cross the Red Sea: The biogeographic history of Varanus yemenensis. Mol. Phylogenet. Evol., 2012; 62: 561–565. 10.1016/j.ympev.2011.09.024 PubMed DOI
Portik DM, Papenfuss TJ. Historical biogeography resolves the origins of endemic Arabian toad lineages (Anura: Bufonidae): Evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia. BMC Evol. Biol., 2015; 15: 152 10.1186/s12862-015-0417-y PubMed DOI PMC
Bouchenak-Khelladi Y., Maurin O, Hurter J, Van der Bank M. The evolutionary history and biogeography of Mimosoideae (Leguminosae): An emphasis on African acacias. Mol. Phylogenet. Evol., 2010; 57: 495–508. 10.1016/j.ympev.2010.07.019 PubMed DOI
Schnitzler J, Barraclough TG, Boatwright JS, Goldblatt P, Manning JC, Powell M, et al. Causes of plant diversification in the Cape biodiversity hotspot of South Africa. Syst. Biol., 2011; 60: 343–357. 10.1093/sysbio/syr006 PubMed DOI
Portillo F, Greenbaum E, Menegon M, Kusamba C, Dehling JM. Phylogeography and species boundaries of Leptopelis (Anura: Arthroleptidae) from the Albertine Rift. Mol. Phylogenet. Evol., 2015; 82: 75–86. 10.1016/j.ympev.2014.09.024 PubMed DOI
Larson T, Castro D, Behangana M, Greenbaum E. Evolutionary history of the river frog genus Amietia (Anura: Pyxicephalidae) reveals extensive diversification in Central African highlands. Mol. Phylogenet. Evol., 2016; 99: 168–181. 10.1016/j.ympev.2016.03.017 PubMed DOI PMC
Medina MF, Bauer AM, Branch WR, Schmitz A, Conradie W, Nagy ZT, et al. Molecular phylogeny of Panaspis and Afroablepharus skinks (Squamata: Scincidae) in the savannas of sub-Saharan Africa. Mol. Phylogenet. Evol., 2016; 100: 409–423. 10.1016/j.ympev.2016.04.026 PubMed DOI PMC
Hughes DF, Kusamba C, Behangana M, Greenbaum E. Integrative taxonomy of the Central African forest chameleon, Kinyongia adolfifriderici (Sauria: Chamaeleonidae), reveals underestimated species diversity in the Albertine Rift. Zool. J. Linn. Soc., 2017; 181: 400–438. 10.1093/zoolinnean/zlx005 DOI
Greenbaum E, Dowell Beer SA, Wagner P, Anderson CG, Villanueva CO, Malonza P, et al. Phylogeography of Jackson’s Forest Lizard Adolfus jacksoni (Sauria: Lacertidae) reveals cryptic diversity in the highlands of East Africa. Herpetol. Monogr., 2018; 32: 51–68. 10.1655/HERPMONOGRAPHS-D-18-00005.1 DOI
Al-Quran S. The Herpetofauna of the Southern Jordan. American-Eurasian J. Agric. & Environ. Sci., 2009; 6: 385–391.
Ismail M, Memish Z. Venomous snakes of Saudi Arabia and the Middle East: A keynote for travellers. Int. J. Antimicrob. Agents, 2003; 21: 164–169. PubMed
Huhndorf MH, Kerbis Peterhans JC, Loew SS. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol. Ecol., 2007; 16: 663–674. 10.1111/j.1365-294X.2007.03153.x PubMed DOI
Fjeldså J, Bowie RCK. New perspectives on the origin and diversification of Africa’s forest avifauna. Afr. J. Ecol., 2008; 46: 235–247. 10.1111/j.1365-2028.2008.00992.x DOI
Voelker G, Outlaw RK, Bowie RCK. Pliocene forest dynamics as a primary driver of African bird speciation. Global Ecol. Biogeogr., 2009; 19: 111–121. 10.1111/j.1466-8238.2009.00500.x DOI
Demos TC, Kerbis Peterhans JC, Agwanda B, Hickerson MJ. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol. Phylogenet. Evol., 2014; 71: 41–54. 10.1016/j.ympev.2013.10.014 PubMed DOI
Lawson LP. The discordance of diversification: Evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania. Mol. Ecol., 2010; 19: 4046–4060. 10.1111/j.1365-294X.2010.04788.x PubMed DOI
Günther ACLG. Sixth account of new species of snakes in the collection of the British Museum. Ann. Mag. Nat. Hist., London, 1868; 1: 413–429 + pl. 17–19.
Wallach V, Williams KL, Boundy J. Snakes of the World: A Catalogue of Living and Extinct Species. CRC Press, Boca Raton, London and New York; 2014.
Boulenger GA. Description of a new snake of the genus Atractaspis from Mount Kenya, British East Africa. Ann. Mag. Nat. Hist., London, 1905; 15: 190.
Sternfeld R. Neue und ungenügend bekannte afrikanische Schlangen. Sitzungsber. Ges. Naturf. Freunde Berlin, 1908; 1908: 92–95.
de Witte GF. Description d’un vipéride nouveau du Kivu (Atractaspis Schoutedeni sp. n.). Rev. Zool. Bot. Afr., 1930; 19: 224–225 + figs.
Angel F. Description d’un vipéride nouveau du Congo belge, et de deux batraciens de Madagascar. Bull. Soc. Zool. Fr., Paris, 1934; 59: 169–172.
Tolley KA, Alexander GJ, Branch WR, Bowles P, Maritz B. Conservation status and threats for African reptiles. Biol. Cons., 2016; 204: 63–71. 10.1016/j.biocon.2016.04.006 DOI
Greenbaum E. Emerald Labyrinth: A Scientist’s Adventures in the Jungles of the Congo. ForeEdge, Lebanon, NH, USA; 2017.
Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MAG, Vandershoot K, et al. Evolutionary origin and development of snake fangs. Nature (London), 2008; 454: 630–633. 10.1038/nature07178 PubMed DOI
Kusamba C, Resetar A, Wallach V, Lulengo K, Nagy ZT. Mouthful of snake: An African snake-eater’s (Polemon fulvicollis graueri) large typhlopid prey. Herpetol. Notes, 2013; 6: 235–237.
Deufel A, Cundall D. Feeding in stiletto snakes. Am. Zool., 2000; 40: 996–997.
Marais J. Natural History Notes—Atractaspididae—Atractaspis bibronii Smith, 1894 —Diet. African Herp News, 2010; 9.
Rasmussen JB. A review of the slender stiletto-snake, Atractaspis aterrima Günther 1863 (Serpentes Atractaspididae). Trop. Zool., 2005; 18: 137–148. 10.1080/03946975.2005.10531216 DOI
Broadley DG. A review of the southern African stiletto snakes of the genus Atractaspis A. Smith (Serpentes: Atractaspididae). Arnoldia, Zimbabwe, 1991; 9: 495–517. 10.1080/03946975.2005.10531216 DOI
Akani GC, Luiselli LM, Angelici FM, Corti C, Zuffi MAL. The case of rainforest stiletto snakes (genus Atractaspis) in southern Nigeria. Evidence of diverging foraging strategies in grossly sympatric snakes with homogeneous body architecture? Ethol. Ecol. Evol., 2001; 13: 89–94. 10.1080/08927014.2001.9522790 DOI
Kochva E, Shayer-Wollberg M, Sobol R. The special pattern of the venom gland in Atractaspis and its bearing on the taxonomic status of the genus. Copeia, 1967; 1967: 763–772. 10.2307/1441887 DOI
Wollberg M, Kochva E, Underwood G. On the rictal glands of some atractaspid snakes. Herpetol. J., 1998; 8: 137–143. 10.1655/0018-0831(2002)058[0001:OTRSOS]2.0.CO;2 DOI
Kochva E. The origin of snakes and evolution of the venom apparatus. Toxicon, 1987; 27: 65–106. PubMed
Broadley DG. FitzSimons’ Snakes of Southern Africa. Delta Books, Johannesburg, South Africa; 1983.
Kochva E, Gans C. Salivary glands of snakes. Clin. Toxicol., 1970; 3: 363–387. 10.3109/15563657008990115 PubMed DOI
Kochva E, Wollberg M. The salivary glands of Aparallactinae (Colubridae) and the venom glands of Elaps (Elapidae) in relation to the taxonomic status of the genus. Zool. J. Linn. Soc., 1970; 49: 217–224. 10.1111/j.1096-3642.1970.tb00737.x DOI
Broadley DG, Craig DT, Wigge J. Snakes of Zambia. Chimaira, Frankfurt, Germany; 2003.
Sabaj, MH. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Version 6.5 (16 August 2016). 2016; electronically accessible at http://www.asih.org/, American Society of Ichthyologists and Herpetologists, Washington, DC.
Lawson R, Slowinski JB, Crother BI, Burbrink FT. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Mol. Phylogenet. Evol., 2005; 37: 581–601. 10.1016/j.ympev.2005.07.016 PubMed DOI
Palumbi SR. Nucleic acids II: The polymerase chain reaction In: Hillis D.M., Moritz C., Mable B.K. (Eds.), Molecular Systematics. Sinauer Associates, MA, USA; 1996. Pp. 205–207.
Zaher H, Grazziotin FG, Cadle JE, Murphy RW, Moura-Leite JCD, Bonatto SL. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: A revised classification and descriptions of new taxa. Pap. Avulsos Zool., São Paulo, 2009; 49: 115–153. 10.1590/S0031-10492009001100001 DOI
Arévalo E, Davis SK, Sites JW Jr. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Syst. Biol., 1994; 43: 387–418. 10.1093/sysbio/43.3.387 DOI
Burbrink FT, Lawson R, Slowinski JP. 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): A critique of the subspecies concept. Evolution, 2000; 54: 2107–2118. 10.1554/0014-3820(2000)054[2107:MDPOTP]2.0.CO;2 PubMed DOI
Slowinski JB, Lawson R. Snake phylogeny: Evidence from nuclear and mitochondrial genes. Mol. Phylogenet. Evol., 2002; 24: 194–202. 10.1016/S1055-7903(02)00239-7 PubMed DOI
Groth JG, Barrowclough GF. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenet. Evol., 1999; 12: 115–123. 10.1006/mpev.1998.0603 PubMed DOI
Are vipers prototypic fear-evoking snakes? A cross-cultural comparison of Somalis and Czechs