Contrasting latitudinal patterns in phylogenetic diversity between woody and herbaceous communities
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31015512
PubMed Central
PMC6478853
DOI
10.1038/s41598-019-42827-1
PII: 10.1038/s41598-019-42827-1
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- rostliny klasifikace MeSH
- tropické klima MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although many studies have shown that species richness decreases from low to high latitudes (the Latitudinal Diversity Gradient), little is known about the relationship between latitude and phylogenetic diversity. Here we examine global latitudinal patterns of phylogenetic diversity using a dataset of 459 woody and 589 herbaceous plant communities. We analysed the relationships between community phylogenetic diversity, latitude, biogeographic realm and vegetation type. Using the most recent global megaphylogeny for seed plants and the standardised effect sizes of the phylogenetic diversity metrics 'mean pairwise distance' (SESmpd) and 'mean nearest taxon distance' (SESmntd), we found that species were more closely-related at low latitudes in woody communities. In herbaceous communities, species were more closely-related at high latitudes than at intermediate latitudes, and the strength of this effect depended on biogeographic realm and vegetation type. Possible causes of this difference are contrasting patterns of speciation and dispersal. Most woody lineages evolved in the tropics, with many gymnosperms but few angiosperms adapting to high latitudes. In contrast, the recent evolution of herbaceous lineages such as grasses in young habitat types may drive coexistence of closely-related species at high latitudes. Our results show that high species richness commonly observed at low latitudes is not associated with high phylogenetic diversity.
Institute of Botany Academy of Sciences of the Czech Republic CZ 37982 Trebon Czech Republic
Institute of Ecology and Earth Sciences University of Tartu Tartu 51014 Estonia
School of Life Sciences University of Sussex Falmer Brighton Sussex BN1 9QG UK
Zobrazit více v PubMed
Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI
Mittelbach GG, et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007;10:315–331. doi: 10.1111/j.1461-0248.2007.01020.x. PubMed DOI
Fine PVA. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 2015;46:369–392. doi: 10.1146/annurev-ecolsys-112414-054102. DOI
Pianka ER. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 1966;100:33–46. doi: 10.1086/282398. DOI
Rohde K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos. 1992;65:514–527. doi: 10.2307/3545569. DOI
Willig MR, Kaufman DM, Stevens RD. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 2003;34:273–309. doi: 10.1146/annurev.ecolsys.34.012103.144032. DOI
Fine PVA, Ree RH. Evidence for a time‐integrated species‐area effect on the latitudinal gradient in tree diversity. Am. Nat. 2006;168:796–804. doi: 10.1086/508635. PubMed DOI
Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 2004;19:639–644. doi: 10.1016/j.tree.2004.09.011. PubMed DOI
Fischer AG. Latitudinal Variations in Organic Diversity. Evolution. 1960;14:64–81. doi: 10.1111/j.1558-5646.1960.tb03057.x. DOI
Ricklefs RE. Historical and ecological dimensions of global patterns in plant diversity. Biol. Skr. 2005;55:583–603.
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 2002;33:475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448. DOI
Guevara JE, et al. Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica. 2016;48:34–46. doi: 10.1111/btp.12298. DOI
Yan Y, Yang X, Tang Z. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan plateau. Ecol. Evol. 2013;3:4584–4595. doi: 10.1002/ece3.847. PubMed DOI PMC
Proches S, Wilson JR, Cowling RM. How much evolutionary history in a 10 × 10 m plot? Proc. R. Soc. B Biol. Sci. 2006;273:1143–1148. doi: 10.1098/rspb.2005.3427. PubMed DOI PMC
Crisp M, Cook L, Steane D. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philos. Trans. R. Soc. B Biol. Sci. 2004;359:1551–1571. doi: 10.1098/rstb.2004.1528. PubMed DOI PMC
Kooyman R, Rossetto M, Cornwell W, Westoby M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biogeogr. 2011;20:707–716. doi: 10.1111/j.1466-8238.2010.00641.x. DOI
Chown SL, Gaston KJ. Areas cradles and museums: The latitudinal gradient in species richness. Trends Ecol. Evol. 2000;15:311–315. doi: 10.1016/S0169-5347(00)01910-8. PubMed DOI
Stebbins, G. L. Flowering Plants: Evolution Above The Species Level. (Mass: Belknap Press of Harvard University Press, 1974).
Silva IA, Batalha MA. Phylogenetic structure of Brazilian savannas under different fire regimes. J. Veg. Sci. 2010;21:1003–1013. doi: 10.1111/j.1654-1103.2010.01208.x. DOI
Culmsee H, Leuschner C. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J. Biogeogr. 2013;40:1997–2010.
Qian H, Zhang Y, Zhang J, Wang X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 2013;22:1183–1191. doi: 10.1111/geb.12069. DOI
Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl. Acad. Sci. 2014;111:8125–8130. doi: 10.1073/pnas.1308932111. PubMed DOI PMC
Qian H, Jin Y, Ricklefs RE. Patterns of phylogenetic relatedness of angiosperm woody plants across biomes and life-history stages. J. Biogeogr. 2017;44:1383–1392. doi: 10.1111/jbi.12936. DOI
Kubota Y, Kusumoto B, Shiono T, Ulrich W. Environmental filters shaping angiosperm tree assembly along climatic and geographic gradients. J. Veg. Sci. 2018;29:607–618. doi: 10.1111/jvs.12648. DOI
Feng G, et al. Phylogenetic age differences in tree assemblages across the Northern Hemisphere increase with long-term climate stability in unstable regions. Glob. Ecol. Biogeogr. 2017;26:1035–1042. doi: 10.1111/geb.12613. DOI
Carlucci MB, et al. Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography. 2017;40:521–530. doi: 10.1111/ecog.02104. DOI
Fritz SA, Rahbek C. Global patterns of amphibian phylogenetic diversity. J. Biogeogr. 2012;39:1373–1382. doi: 10.1111/j.1365-2699.2012.02757.x. DOI
Davies TJ, Buckley LB. Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philos. Trans. R. Soc. B Biol. Sci. 2011;366:2414–2425. doi: 10.1098/rstb.2011.0058. PubMed DOI PMC
Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on earth; a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Engemann K, et al. Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Bot. J. Linn. Soc. 2016;180:141–160. doi: 10.1111/boj.12362. DOI
Miller ET, Farine DR, Trisos CH. Phylogenetic community structure metrics and null models: a review with new methods and software. Ecography. 2017;40:461–477. doi: 10.1111/ecog.02070. DOI
Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better) Funct. Ecol. 2015;29:600–614. doi: 10.1111/1365-2435.12425. DOI
Pigot AL, Etienne RS. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 2015;18:153–163. doi: 10.1111/ele.12395. PubMed DOI PMC
Weber MG, Wagner CE, Best RJ, Harmon LJ, Matthews B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 2017;32:291–304. doi: 10.1016/j.tree.2017.01.003. PubMed DOI
Gerhold P, Carlucci MB, Proches S, Prinzing A. The deep past controls the phylogenetic structure of present, local communities. Annu. Rev. Ecol. Evol. Syst. 2018;49:477–497. doi: 10.1146/annurev-ecolsys-110617-062348. DOI
Webb CO. Exploring the phylogenetic struture of ecological communities: an example for rain forest trees. Am. Nat. 2000;156:145–155. doi: 10.1086/303378. PubMed DOI
Cavender-bares J, Keen A, Miles B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology. 2015;87:S109–S122. doi: 10.1890/0012-9658(2006)87[109:PSOFPC]2.0.CO;2. PubMed DOI
Swenson NG, et al. The problem and promise of scale dependency in community phylogenetics. Ecology. 2006;87:2418–2424. doi: 10.1890/0012-9658(2006)87[2418:TPAPOS]2.0.CO;2. PubMed DOI
Vamosi SM, Heard SB, Vamosi JC, Webb CO. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 2009;18:572–592. doi: 10.1111/j.1365-294X.2008.04001.x. PubMed DOI
Axelrod DI. Origin of deciduous and evergreen habits in temperate forests. Evolution. 1966;20:1–15. doi: 10.1111/j.1558-5646.1966.tb03339.x. PubMed DOI
Ricklefs RE. Evolutionary diversification and the origin of the relationship of diversity-environment. Ecology. 2006;87:3–13. doi: 10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2. PubMed DOI
Richards, P. W. The Tropical Rain Forest: An Ecological Study. (Cambridge University Press, 1996).
Friis EM, Pedersen KR, Crane PR. Diversity in obscurity: fossil flowers and the early history of angiosperms. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:369–382. doi: 10.1098/rstb.2009.0227. PubMed DOI PMC
Wing SL, Boucher LD. Ecological aspects of the cretaceous flowering plant radiation. Annu. Rev. Earth Planet. Sci. 1998;26:379–421. doi: 10.1146/annurev.earth.26.1.379. DOI
Augusto L, Davies TJ, Delzon S, de Schrijver A. The enigma of the rise of angiosperms: Can we untie the knot? Ecol. Lett. 2014;17:1326–1338. doi: 10.1111/ele.12323. PubMed DOI
Graham A. The age and diversification of terrestrial new world ecosystems through cretaceous and Cenozoic time. Am. J. Bot. 2011;98:336–351. doi: 10.3732/ajb.1000353. PubMed DOI
Berendse F, Scheffer M. The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’. Ecol. Lett. 2009;12:865–872. doi: 10.1111/j.1461-0248.2009.01342.x. PubMed DOI PMC
Bond WJ. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 1989;36:227–249. doi: 10.1111/j.1095-8312.1989.tb00492.x. DOI
Smith SA, Beaulieu JM. Life history influences rates of climatic niche evolution in flowering plants. Proc. R. Soc. B Biol. Sci. 2009;276:4345–4352. doi: 10.1098/rspb.2009.1176. PubMed DOI PMC
Zanne AE, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92. doi: 10.1038/nature12872. PubMed DOI
Wang W, et al. The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Sci. Rep. 2016;6:27259. doi: 10.1038/srep27259. PubMed DOI PMC
Linnert C, et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 2014;5:4194. doi: 10.1038/ncomms5194. PubMed DOI PMC
Couvreur TLPP, et al. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae) Mol. Biol. Evol. 2010;27:55–71. doi: 10.1093/molbev/msp202. PubMed DOI
Bell C, Edwards E, Kim S, Donoghue M. Dipsacales phylogeny based on chloroplast DNA sequences. Harvard Pap. Bot. 2001;6:481–499.
Bell CD, Donoghue MJ. Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Org. Divers. Evol. 2005;5:147–159. doi: 10.1016/j.ode.2004.10.014. DOI
Moore BR, Donoghue MJ. Correlates of diversification in the plant clade dipsacales: geographic movement and evolutionary innovations. Am. Nat. 2007;170:S28–S55. doi: 10.1086/519460. PubMed DOI
Lososová Z, et al. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. J. Veg. Sci. 2015;26:1080–1089. doi: 10.1111/jvs.12308. DOI
Flynn JJ, Wyss AR. Recent advances in South American mammalian paleontology. Trends Ecol. Evol. 1998;13:449–54. doi: 10.1016/S0169-5347(98)01457-8. PubMed DOI
Mishler BD, et al. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian acacia. Nat. Commun. 2014;5:4473. doi: 10.1038/ncomms5473. PubMed DOI
Willis KJ, Niklas KJ. The role of Quaternary environmental change in plant macroevolution: the exception or the rule? Philos. Trans. R. Soc. B Biol. Sci. 2004;359:159–172. doi: 10.1098/rstb.2003.1387. PubMed DOI PMC
Phillips, O. & Miller, J. S. Global Patterns Of Plant Diversity: Alwyn H. Gentry’s Forest Transect Data Set. (Missouri Botanical Press, 2002).
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI
Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. Taxonstand: An r package for species names standardisation in vegetation databases. Methods Ecol. Evol. 2012;3:1078–1083. doi: 10.1111/j.2041-210X.2012.00232.x. DOI
Qian H, Jin Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 2016;9:233–239. doi: 10.1093/jpe/rtv047. DOI
Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100. doi: 10.1093/bioinformatics/btn358. PubMed DOI
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).
Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI
Hartmann DL, et al. Observations: Atmosphere and surface. Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 2013;9781107057:159–254.
Ricklefs, R. E. The Economy Of Nature. (W. H. Freeman and Company, 2008).
Stefan, V. & Levin, S. Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001. https://rawgit.com/valentinitnelav/plotbiomes/master/html/Whittaker_biomes_examples.html (2018).
Pinheiro, J., Bates, D., DebRoy, S., D., S. & Team, R. C. {nlme}: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131. http://CRAN.R-project.org/package=nlme (2017).
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Barton, K. MuMIn: multi-model inference. R package version 1.42.1 (2018).
Legendre P. Spatial autocorrelation: trouble or new paradigm? Ecology. 1993;74:1659–1673. doi: 10.2307/1939924. DOI
Wickham, H. Ggplot2: Elegant Graphics For Data Analysis. (Springer, 2016).
Global decoupling of functional and phylogenetic diversity in plant communities
Latitudinal gradients in the phylogenetic assembly of angiosperms in Asia during the Holocene
Connecting the multiple dimensions of global soil fungal diversity