Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State

. 2019 May 03 ; 24 (9) : . [epub] 20190503

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31058873

Grantová podpora
LO1507 POLYMAT Ministerstvo Školství, Mládeže a Tělovýchovy

The 1H chemical shielding anisotropy (CSA) is an NMR parameter that is exquisitely sensitive to the local environment of protons in crystalline systems, but it is difficult to obtain it experimentally due to the need to concomitantly suppress other anisotropic interactions in the solid-state NMR (SSNMR) pulse sequences. The SSNMR measurements of the 1H CSA are particularly challenging if the fast magic-angle-spinning (MAS) is applied. It is thus important to confront the results of both the single-crystal (SC) and fast-MAS experiments with their theoretical counterparts. Here the plane-waves (PW) DFT calculations have been carried out using two functionals in order to precisely characterize the structures and the 1H NMR chemical shielding tensors (CSTs) of the solid forms of maleic, malonic, and citric acids, and of L-histidine hydrochloride monohydrate. The level of agreement between the PW DFT and either SC or fast-MAS SSNMR 1H CSA data has been critically compared. It has been found that for the eigenvalues of the 1H CSTs provided by the fast-MAS measurements, an accuracy limit of current PW DFT predictions is about two ppm in terms of the standard deviation of the linear regression model, and sources of this error have been thoroughly discussed.

Zobrazit více v PubMed

Vasa S.K., Rovó P., Linser R. Protons as versatile reporters in solid-state NMR spectroscopy. Acc. Chem. Res. 2019;51:1386–1395. doi: 10.1021/acs.accounts.8b00055. PubMed DOI

Duncan T.M. Compilation of Chemical Shift Anisotropies. Faragut Press; Chicago, IL, USA: 1990.

Hou G., Gupta R., Polenova T., Vega A.J. A magic-angle spinning NMR method for the site-specific measurement of proton chemical-shift anisotropy in biological and organic solids. Isr. J. Chem. 2014;54:171–183. doi: 10.1002/ijch.201300099. PubMed DOI PMC

Liang L., Hou G., Bao X. Measurement of proton chemical shift anisotropy in solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 2018;93:16–28. doi: 10.1016/j.ssnmr.2018.04.002. PubMed DOI

Damron J.T., Kersten K.M., Pandey M.K., Nishiyama Y., Matzger A. Role of anomalous water constraints in the efficacy of pharmaceuticals probed by 1H solid-state NMR. ChemistrySelect. 2017;2:6797–6800. doi: 10.1002/slct.201701547. PubMed DOI PMC

Pandey M.K., Damron J.T., Ramamoorthy A., Nishiyama Y. Proton-detected 3D 1H anisotropic/14N/1H isotropic chemical shifts correlation NMR under fast magic angle spinning on solid samples without isotopic enrichment. Solid State Nucl. Magn. Reson. 2019;97:40–45. doi: 10.1016/j.ssnmr.2018.12.002. PubMed DOI

Brouwer D.H., Ripmeester J.A. Symmetry-based recoupling of proton chemical shift anisotropies in ultrahigh-field solid-state NMR. J. Magn. Reson. 2007;185:173–178. doi: 10.1016/j.jmr.2006.12.003. PubMed DOI

Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI

Yates J.R., Pickard J., Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI

Grosescu R., Achlama A.M., Haeberlen U., Spiess H.W. Multiple pulse study of the proton shielding in single crystals of maleic acid. Chem. Phys. 1974;5:119–128. doi: 10.1016/0301-0104(74)80011-X. DOI

Sagnowski S.F., Aravamudhan S., Haeberlen U. Wide-line and high-resolution proton magnetic resonance in single crystals of malonic acid. J. Magn. Reson. 1977;28:271–288. doi: 10.1016/0022-2364(77)90156-1. DOI

Li S., Hong M. Protonation, tautomerization, and rotameric structure of histidine: A comprehensive study by magic-angle-spinning solid-state NMR. J. Am. Chem. Soc. 2011;133:1534–1544. doi: 10.1021/ja108943n. PubMed DOI PMC

Harbison G., Herzfeld J., Griffin R.G. Nitrogen-15 chemical shift tensors in l-histidine hydrochloride monohydrate. J. Am. Chem. Soc. 1981;103:4752–4754. doi: 10.1021/ja00406a015. DOI

Pandey M.K., Nishiyama Y. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR. J. Magn. Reson. 2015;261:133–140. doi: 10.1016/j.jmr.2015.10.015. PubMed DOI

Pandey M.K., Nishiyama Y. Determination of relative orientation between 1H CSA tensors from a 3D solid-state NMR experiment mediated through 1H/1H RFDR mixing under ultrafast MAS. Solid State Nucl. Magn. Reson. 2015;70:15–20. doi: 10.1016/j.ssnmr.2015.05.001. PubMed DOI

Beran G.J.O. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 2016;116:5567–5613. doi: 10.1021/acs.chemrev.5b00648. PubMed DOI

Widdifield C.M., Lill S.O.N., Broo A., Lindkvist A., Pettersen A., Ankarberg A.S., Aldred P., Schantz S., Emsley L. Does Z′ equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease. Chem. Phys. Phys. Chem. 2017;19:16650–16661. doi: 10.1039/C7CP02349A. PubMed DOI

Wang L., Uribe-Romo F.J., Mueller L.J., Harper J.K. Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: A study on hydrogen bonding in polymorphs of palmitic acid. Chem. Phys. Phys. Chem. 2018;20:8475–8487. doi: 10.1039/C7CP06724K. PubMed DOI PMC

Czernek J., Urbanova M., Brus J. NMR crystallography of the polymorphs of metergoline. Crystals. 2018;8:378. doi: 10.3390/cryst8100378. DOI

Cui J., Olmsted D.L., Mehta A.K., Asta M., Hayes S.E. NMR crystallography: evaluation of hydrogen positions in hydromagnesite by 13C{1H} REDOR solid-state NMR and density functional theory calculation of chemical shielding tensors. Angew. Chem. Int. Ed. 2019;58:4210–4216. doi: 10.1002/anie.201813306. PubMed DOI

Soss S.E., Flynn P.F., Iuliucci R.J., Young R.P., Mueller L.J., Hartman J.D., Beran G.J.O., Harper J.K. Measuring and modeling highly accurate 15 N chemical shift tensors in a peptide. ChemPhysChem. 2017;18:2225–2232. doi: 10.1002/cphc.201700357. PubMed DOI

Dawson D.M., Moran R.F., Sneddon S., Ashbrook S.E. Is the 31P Chemical shift anisotropy of aluminophosphates a useful parameter for NMR crystallography? Magn. Reson. Chem. 2018;57:176–190. doi: 10.1002/mrc.4788. PubMed DOI

Beran G.J.O., Hartman J.D., Heit Y.N. Predicting molecular crystal properties from first principles: Finite-temperature thermochemistry to NMR crystallography. Acc. Chem. Res. 2016;49:2501–2508. doi: 10.1021/acs.accounts.6b00404. PubMed DOI

Paruzzo F.M., Hofstetter A., Musil F., De S., Ceriotti M., Emsley L. Chemical shifts in molecular solids by machine learning. Nat. Commun. 2018;9:4501. doi: 10.1038/s41467-018-06972-x. PubMed DOI PMC

Brus J., Czernek J., Kobera L., Urbanová M., Abbrent S., Hušák M. Predicting the crystal structure of decitabine by powder NMR crystallography: Influence of long-range molecular packing symmetry on NMR parameters. Cryst. Growth Des. 2016;16:7102–7111. doi: 10.1021/acs.cgd.6b01341. DOI

Brus J., Czernek J., Hrubý M., Švec P., Kobera L., Abbrent S., Urbanová M. Efficient strategy for determining the atomic-resolution structure of micro- and nanocrystalline solids within polymeric microbeads: Domain-edited NMR crystallography. Macromolecules. 2018;51:5364–5374. doi: 10.1021/acs.macromol.8b00392. DOI

Czernek J. On the solid-state NMR spectra of naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI

Bonhomme C., Gervais C., Babonneau F., Coelho C., Pourpoint F., Azais T., Ashbrook S.E., Griffin J.M., Yates J.R., Mauri F., et al. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: A chemist’s point of view. Chem. Rev. 2012;112:5733–5779. doi: 10.1021/cr300108a. PubMed DOI

James M.N.G., Williams G.J.B. A refinement of the crystal structure of maleic acid. Acta Cryst. B. 1974;30:1249–1257. doi: 10.1107/S0567740874004626. DOI

Goedkoop J.A., MacGillavry C.H. The crystal structure of malonic acid. Acta Cryst. 1957;10:125–127. doi: 10.1107/S0365110X57000353. DOI

Fuess H., Hohlwein D., Mason S.A. Neutron diffraction study of l-histidine hydrochloride monohydrate. Acta Cryst. B. 1977;33:654–659. doi: 10.1107/S0567740877004415. DOI

The Cambridge Structural Database Code CITRAC11. [(accessed on 2 May 2019)]; Available online: https://www.ccdc.cam.ac.uk/

Miah H.K., Bennett D.A., Iuga D., Titman J.J. Measuring proton shift tensors with ultrafast MAS NMR. J. Magn. Reson. 2013;235:1–5. doi: 10.1016/j.jmr.2013.07.005. PubMed DOI

Hou G., Byeon I.L., Ahn J., Gronenborn A.M., Polenova T. Recoupling of chemical shift anisotropy by R-symmetry sequencesin magic angle spinning NMR spectroscopy. J. Chem. Phys. 2012;137:134201. doi: 10.1063/1.4754149. PubMed DOI PMC

Pandey M.K., Malon M., Ramamoorthy A., Nishiyama Y. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy. J. Magn. Reson. 2015;250:45–54. doi: 10.1016/j.jmr.2014.11.002. PubMed DOI PMC

Monserrat B., Needs R.J., Pickard C.J. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple. J. Chem. Phys. 2014;141:134113. doi: 10.1063/1.4897261. PubMed DOI

Dračínský M., Bouř P., Hodkinson P. Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations. J. Chem. Theory Comput. 2016;12:968–973. doi: 10.1021/acs.jctc.5b01131. PubMed DOI

Carignani E., Borsacchi S., Concistre M., Johannessen O.G., Geppi M. Direct observation of the effects of small-amplitude motions on 13C nuclear shielding tensors by means of low-temperature 2D MAS NMR spectroscopy. Chem. Phys. Lett. 2018;706:107–112.

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI

Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Hammer B., Hansen L.B., Norskov J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 1999;59:7413–7421. doi: 10.1103/PhysRevB.59.7413. DOI

Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09, Revision D.01. Gaussian, Inc.; Wallingford, CT, USA: 2013.

Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI

Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI

Feller D., Feyereisen M.W. Ab initio study of hydrogen bonding in the phenol–water system. J. Comput. Chem. 1993;14:1027–1035. doi: 10.1002/jcc.540140904. DOI

Czernek J., Brus J. On the predictions of the 11B solid state NMR parameters. Chem. Phys. Lett. 2016;655–656:66–70. doi: 10.1016/j.cplett.2016.05.027. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...