Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1507 POLYMAT
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31058873
PubMed Central
PMC6539467
DOI
10.3390/molecules24091731
PII: molecules24091731
Knihovny.cz E-zdroje
- Klíčová slova
- GIPAW, MAS NMR, chemical shielding anisotropy, plane-waves DFT,
- MeSH
- anizotropie MeSH
- histidin chemie MeSH
- kyselina citronová chemie MeSH
- lineární modely MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- protony MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histidin MeSH
- kyselina citronová MeSH
- protony MeSH
The 1H chemical shielding anisotropy (CSA) is an NMR parameter that is exquisitely sensitive to the local environment of protons in crystalline systems, but it is difficult to obtain it experimentally due to the need to concomitantly suppress other anisotropic interactions in the solid-state NMR (SSNMR) pulse sequences. The SSNMR measurements of the 1H CSA are particularly challenging if the fast magic-angle-spinning (MAS) is applied. It is thus important to confront the results of both the single-crystal (SC) and fast-MAS experiments with their theoretical counterparts. Here the plane-waves (PW) DFT calculations have been carried out using two functionals in order to precisely characterize the structures and the 1H NMR chemical shielding tensors (CSTs) of the solid forms of maleic, malonic, and citric acids, and of L-histidine hydrochloride monohydrate. The level of agreement between the PW DFT and either SC or fast-MAS SSNMR 1H CSA data has been critically compared. It has been found that for the eigenvalues of the 1H CSTs provided by the fast-MAS measurements, an accuracy limit of current PW DFT predictions is about two ppm in terms of the standard deviation of the linear regression model, and sources of this error have been thoroughly discussed.
Zobrazit více v PubMed
Vasa S.K., Rovó P., Linser R. Protons as versatile reporters in solid-state NMR spectroscopy. Acc. Chem. Res. 2019;51:1386–1395. doi: 10.1021/acs.accounts.8b00055. PubMed DOI
Duncan T.M. Compilation of Chemical Shift Anisotropies. Faragut Press; Chicago, IL, USA: 1990.
Hou G., Gupta R., Polenova T., Vega A.J. A magic-angle spinning NMR method for the site-specific measurement of proton chemical-shift anisotropy in biological and organic solids. Isr. J. Chem. 2014;54:171–183. doi: 10.1002/ijch.201300099. PubMed DOI PMC
Liang L., Hou G., Bao X. Measurement of proton chemical shift anisotropy in solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 2018;93:16–28. doi: 10.1016/j.ssnmr.2018.04.002. PubMed DOI
Damron J.T., Kersten K.M., Pandey M.K., Nishiyama Y., Matzger A. Role of anomalous water constraints in the efficacy of pharmaceuticals probed by 1H solid-state NMR. ChemistrySelect. 2017;2:6797–6800. doi: 10.1002/slct.201701547. PubMed DOI PMC
Pandey M.K., Damron J.T., Ramamoorthy A., Nishiyama Y. Proton-detected 3D 1H anisotropic/14N/1H isotropic chemical shifts correlation NMR under fast magic angle spinning on solid samples without isotopic enrichment. Solid State Nucl. Magn. Reson. 2019;97:40–45. doi: 10.1016/j.ssnmr.2018.12.002. PubMed DOI
Brouwer D.H., Ripmeester J.A. Symmetry-based recoupling of proton chemical shift anisotropies in ultrahigh-field solid-state NMR. J. Magn. Reson. 2007;185:173–178. doi: 10.1016/j.jmr.2006.12.003. PubMed DOI
Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J.R., Pickard J., Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Grosescu R., Achlama A.M., Haeberlen U., Spiess H.W. Multiple pulse study of the proton shielding in single crystals of maleic acid. Chem. Phys. 1974;5:119–128. doi: 10.1016/0301-0104(74)80011-X. DOI
Sagnowski S.F., Aravamudhan S., Haeberlen U. Wide-line and high-resolution proton magnetic resonance in single crystals of malonic acid. J. Magn. Reson. 1977;28:271–288. doi: 10.1016/0022-2364(77)90156-1. DOI
Li S., Hong M. Protonation, tautomerization, and rotameric structure of histidine: A comprehensive study by magic-angle-spinning solid-state NMR. J. Am. Chem. Soc. 2011;133:1534–1544. doi: 10.1021/ja108943n. PubMed DOI PMC
Harbison G., Herzfeld J., Griffin R.G. Nitrogen-15 chemical shift tensors in l-histidine hydrochloride monohydrate. J. Am. Chem. Soc. 1981;103:4752–4754. doi: 10.1021/ja00406a015. DOI
Pandey M.K., Nishiyama Y. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR. J. Magn. Reson. 2015;261:133–140. doi: 10.1016/j.jmr.2015.10.015. PubMed DOI
Pandey M.K., Nishiyama Y. Determination of relative orientation between 1H CSA tensors from a 3D solid-state NMR experiment mediated through 1H/1H RFDR mixing under ultrafast MAS. Solid State Nucl. Magn. Reson. 2015;70:15–20. doi: 10.1016/j.ssnmr.2015.05.001. PubMed DOI
Beran G.J.O. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 2016;116:5567–5613. doi: 10.1021/acs.chemrev.5b00648. PubMed DOI
Widdifield C.M., Lill S.O.N., Broo A., Lindkvist A., Pettersen A., Ankarberg A.S., Aldred P., Schantz S., Emsley L. Does Z′ equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease. Chem. Phys. Phys. Chem. 2017;19:16650–16661. doi: 10.1039/C7CP02349A. PubMed DOI
Wang L., Uribe-Romo F.J., Mueller L.J., Harper J.K. Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: A study on hydrogen bonding in polymorphs of palmitic acid. Chem. Phys. Phys. Chem. 2018;20:8475–8487. doi: 10.1039/C7CP06724K. PubMed DOI PMC
Czernek J., Urbanova M., Brus J. NMR crystallography of the polymorphs of metergoline. Crystals. 2018;8:378. doi: 10.3390/cryst8100378. DOI
Cui J., Olmsted D.L., Mehta A.K., Asta M., Hayes S.E. NMR crystallography: evaluation of hydrogen positions in hydromagnesite by 13C{1H} REDOR solid-state NMR and density functional theory calculation of chemical shielding tensors. Angew. Chem. Int. Ed. 2019;58:4210–4216. doi: 10.1002/anie.201813306. PubMed DOI
Soss S.E., Flynn P.F., Iuliucci R.J., Young R.P., Mueller L.J., Hartman J.D., Beran G.J.O., Harper J.K. Measuring and modeling highly accurate 15 N chemical shift tensors in a peptide. ChemPhysChem. 2017;18:2225–2232. doi: 10.1002/cphc.201700357. PubMed DOI
Dawson D.M., Moran R.F., Sneddon S., Ashbrook S.E. Is the 31P Chemical shift anisotropy of aluminophosphates a useful parameter for NMR crystallography? Magn. Reson. Chem. 2018;57:176–190. doi: 10.1002/mrc.4788. PubMed DOI
Beran G.J.O., Hartman J.D., Heit Y.N. Predicting molecular crystal properties from first principles: Finite-temperature thermochemistry to NMR crystallography. Acc. Chem. Res. 2016;49:2501–2508. doi: 10.1021/acs.accounts.6b00404. PubMed DOI
Paruzzo F.M., Hofstetter A., Musil F., De S., Ceriotti M., Emsley L. Chemical shifts in molecular solids by machine learning. Nat. Commun. 2018;9:4501. doi: 10.1038/s41467-018-06972-x. PubMed DOI PMC
Brus J., Czernek J., Kobera L., Urbanová M., Abbrent S., Hušák M. Predicting the crystal structure of decitabine by powder NMR crystallography: Influence of long-range molecular packing symmetry on NMR parameters. Cryst. Growth Des. 2016;16:7102–7111. doi: 10.1021/acs.cgd.6b01341. DOI
Brus J., Czernek J., Hrubý M., Švec P., Kobera L., Abbrent S., Urbanová M. Efficient strategy for determining the atomic-resolution structure of micro- and nanocrystalline solids within polymeric microbeads: Domain-edited NMR crystallography. Macromolecules. 2018;51:5364–5374. doi: 10.1021/acs.macromol.8b00392. DOI
Czernek J. On the solid-state NMR spectra of naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI
Bonhomme C., Gervais C., Babonneau F., Coelho C., Pourpoint F., Azais T., Ashbrook S.E., Griffin J.M., Yates J.R., Mauri F., et al. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: A chemist’s point of view. Chem. Rev. 2012;112:5733–5779. doi: 10.1021/cr300108a. PubMed DOI
James M.N.G., Williams G.J.B. A refinement of the crystal structure of maleic acid. Acta Cryst. B. 1974;30:1249–1257. doi: 10.1107/S0567740874004626. DOI
Goedkoop J.A., MacGillavry C.H. The crystal structure of malonic acid. Acta Cryst. 1957;10:125–127. doi: 10.1107/S0365110X57000353. DOI
Fuess H., Hohlwein D., Mason S.A. Neutron diffraction study of l-histidine hydrochloride monohydrate. Acta Cryst. B. 1977;33:654–659. doi: 10.1107/S0567740877004415. DOI
The Cambridge Structural Database Code CITRAC11. [(accessed on 2 May 2019)]; Available online: https://www.ccdc.cam.ac.uk/
Miah H.K., Bennett D.A., Iuga D., Titman J.J. Measuring proton shift tensors with ultrafast MAS NMR. J. Magn. Reson. 2013;235:1–5. doi: 10.1016/j.jmr.2013.07.005. PubMed DOI
Hou G., Byeon I.L., Ahn J., Gronenborn A.M., Polenova T. Recoupling of chemical shift anisotropy by R-symmetry sequencesin magic angle spinning NMR spectroscopy. J. Chem. Phys. 2012;137:134201. doi: 10.1063/1.4754149. PubMed DOI PMC
Pandey M.K., Malon M., Ramamoorthy A., Nishiyama Y. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy. J. Magn. Reson. 2015;250:45–54. doi: 10.1016/j.jmr.2014.11.002. PubMed DOI PMC
Monserrat B., Needs R.J., Pickard C.J. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple. J. Chem. Phys. 2014;141:134113. doi: 10.1063/1.4897261. PubMed DOI
Dračínský M., Bouř P., Hodkinson P. Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations. J. Chem. Theory Comput. 2016;12:968–973. doi: 10.1021/acs.jctc.5b01131. PubMed DOI
Carignani E., Borsacchi S., Concistre M., Johannessen O.G., Geppi M. Direct observation of the effects of small-amplitude motions on 13C nuclear shielding tensors by means of low-temperature 2D MAS NMR spectroscopy. Chem. Phys. Lett. 2018;706:107–112.
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Hammer B., Hansen L.B., Norskov J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 1999;59:7413–7421. doi: 10.1103/PhysRevB.59.7413. DOI
Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09, Revision D.01. Gaussian, Inc.; Wallingford, CT, USA: 2013.
Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI
Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Feller D., Feyereisen M.W. Ab initio study of hydrogen bonding in the phenol–water system. J. Comput. Chem. 1993;14:1027–1035. doi: 10.1002/jcc.540140904. DOI
Czernek J., Brus J. On the predictions of the 11B solid state NMR parameters. Chem. Phys. Lett. 2016;655–656:66–70. doi: 10.1016/j.cplett.2016.05.027. DOI
Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments
Polymorphic Forms of Valinomycin Investigated by NMR Crystallography
Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides