• This record comes from PubMed

Field evaluation of synthetic and neem-derived alternative insecticides in developing action thresholds against cauliflower pests

. 2019 May 22 ; 9 (1) : 7684. [epub] 20190522

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31118444
PubMed Central PMC6531477
DOI 10.1038/s41598-019-44080-y
PII: 10.1038/s41598-019-44080-y
Knihovny.cz E-resources

Synthetic chemical pesticides can enhance crop yields but also have undesired effects. Alternative 'botanical insecticides' may also have non-target effects on pollinators and biocontrol services. Employing action thresholds (ATs) can reduce pesticide (whether synthetic or botanical) use compared to fixed-interval applications. Here the azadirachtin-based botanical formulation NeemAzal and a neem seed extract (NSE) were evaluated in field spraying trials alongside commonly-used synthetics (Voliam Flexi [chlorentraniliprole plus thiamethoxam] and imidacloprid) in developing ATs for the regular and cosmopolitan cauliflower pests Brevicoryne brassicae, Plutella xylostella and Spodoptera litura. We considered the size of the S. litura larvae infesting the crop in order to derive ATs. ATs per plant were higher for NeemAzal (0.55 larvae for P. xylostella and 3 larvae for large-sized S. litura) than for Voliam Flexi (0.30 larvae for P. xylostella and 0.80 larvae for S. litura) but were similar for B. brassicae (50 individuals). Higher ATs when using azadirachtin were associated with the diverse modes of action of botanicals, for instance NeemAzal and NSE deterred oviposition of S. litura. Although the exact values of ATs are likely to have regional limits, our approach can be applied for determining ATs against common lepidopteran and aphid pests in many other vegetable crop agro-ecosystems.

See more in PubMed

Casida JE, Quistad GB. Golden age of insecticide research: past, present, or future? Annu. Rev. Entomol. 1998;43:1–16. doi: 10.1146/annurev.ento.43.1.1. PubMed DOI

Ehler LE. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006;62:787–789. doi: 10.1002/ps.1247. PubMed DOI

Haviland DR, Beede RH, Daane KM. Crop loss relationships and economic injury levels for Ferrisia gilli (Hemiptera: Pseudococcidae) infesting pistachio in California. J. Econ. Entomol. 2015;108:2683–2690. doi: 10.1093/jee/tov223. PubMed DOI

Pedigo LP, Higley LG. The economic injury level concept and environmental quality: a new perspective. American Entomologist. 1992;38:12–21. doi: 10.1093/ae/38.1.12. DOI

Pereira PS, et al. Economic injury levels and sequential sampling plans for Frankliniella schultzei in watermelon crops. Pest Manag. Sci. 2017;73:1438–1445. doi: 10.1002/ps.4475. PubMed DOI

Nault BA, Shelton AM. Impact of insecticide efficacy on developing action thresholds for pest management: a case study of onion thrips (Thysanoptera: Thripidae) on onion. J. Econ. Entomol. 2010;103:1315–1326. doi: 10.1603/EC10096. PubMed DOI

Saeed Rabia, Razaq Muhammad, Mahmood Ur Rehman Hafiz, Waheed Abdul, Farooq Muhammad. Evaluating Action Thresholds for Amrasca devastans (Hemiptera: Cicadellidae) Management on Transgenic and Conventional Cotton Across Multiple Planting Dates. Journal of Economic Entomology. 2018;111(5):2182–2191. doi: 10.1093/jee/toy161. PubMed DOI

Burkness EC, Hutchison WD. Action thresholds for striped cucumber beetle (Coleoptera: Chrysomelidae) on ‘Carolina’ cucumber. Crop Prot. 1998;17:331–336. doi: 10.1016/S0261-2194(98)00021-0. DOI

Walker GP, Herman TJ, Kale AJ, Wallace AR. An adjustable action threshold using larval parasitism of Helicoverpa armigera (Lepidoptera: Noctuidae) in IPM for processing tomatoes. Biol. Control. 2010;52:30–36. doi: 10.1016/j.biocontrol.2009.09.003. DOI

Naranjo S, et al. Action thresholds for the management of Bemisia tabaci (Homoptera: Aleyrodidae) in cotton. J. Econ. Entomol. 1998;91:1415–1426. doi: 10.1093/jee/91.6.1415. PubMed DOI

Reddy GV, Tangtrakulwanich K. Action threshold treatment regimens for red spider mite (Acari: Tetranychidae) and tomato fruitworm (Lepidoptera: Noctuidae) on tomato. Fla. Entomol. 2013;96:1084–1096. doi: 10.1653/024.096.0348. DOI

Ester A, de Putter H, van Bilsen J. Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Prot. 2003;22:761–768. doi: 10.1016/S0261-2194(03)00042-5. DOI

Weinberger K, Srinivasan R. Farmers’ management of cabbage and cauliflower pests in India and their approaches to crop protection. J. Asia-Pac. Entomol. 2009;12:253–259. doi: 10.1016/j.aspen.2009.08.003. DOI

Maqsood S, Afzal M, Aqeel A, Raza ABM, Wakil W. Influence of weather factors on population dynamics of armyworm, Spodoptera litura F. on cauliflower, Brassica oleracea in Punjab. Pakistan J. Zool. 2016;48:1311–1315.

Pallett D, et al. The incidence of viruses in wild Brassica rapa ssp. sylvestris in southern England. Ann. Appl. Biol. 2002;141:163–170. doi: 10.1111/j.1744-7348.2002.tb00209.x. DOI

Sayyed AH, Saeed S, Noor-Ul-Ane M, Crickmore N. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae) J. Econ. Entomol. 2008;101:1658–1666. doi: 10.1093/jee/101.5.1658. PubMed DOI

Kumari B, Madan V, Singh J, Singh S, Kathpal T. Monitoring of pesticidal contamination of farmgate vegetables from Hisar. Environ. Monit. Assess. 2004;90:65–71. doi: 10.1023/B:EMAS.0000003566.63111.f6. PubMed DOI

Amarasekare KG, Shearer PW, Mills NJ. Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biol. Control. 2016;102:7–16. doi: 10.1016/j.biocontrol.2015.10.015. DOI

Regan K, Ordosch D, Glover KD, Tilmon KJ, Szczepaniec A. Effects of a pyrethroid and two neonicotinoid insecticides on population dynamics of key pests of soybean and abundance of their natural enemies. Crop Prot. 2017;98:24–32. doi: 10.1016/j.cropro.2017.03.004. DOI

Shad SA, et al. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab.(Lepidoptera: Noctuidae) J. Pest Sci. 2012;85:153–162. doi: 10.1007/s10340-011-0404-z. DOI

Ahmad M, Gull S. Susceptibility of armyworm Spodoptera litura (Lepidoptera: Noctuidae) to novel insecticides in Pakistan. Can. Entomol. 2017;149:649–661. doi: 10.4039/tce.2017.29. DOI

Isman, M. B. In Gross, A. D., Coats, J. R., Duke, S. O., Seiber, J. N. (eds) Biopesticides: state of the art and future opportunities 21–30, 10.1021/bk-2014-1172.ch1002 (ACS Symposium Series, Vol. 1172, 2014). PubMed

Darko G, Akoto O. Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food Chem. Toxicol. 2008;46:3703–3706. doi: 10.1016/j.fct.2008.09.049. PubMed DOI

Dinham B. Growing vegetables in developing countries for local urban populations and export markets: problems confronting small-scale producers. Pest Manag. Sci. 2003;59:575–582. doi: 10.1002/ps.654. PubMed DOI

Amoabeng BW, et al. Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS One. 2013;8:e78651. doi: 10.1371/journal.pone.0078651. PubMed DOI PMC

Amoabeng BW, Gurr GM, Gitau CW, Stevenson PC. Cost: benefit analysis of botanical insecticide use in cabbage: Implications for smallholder farmers in developing countries. Crop Prot. 2014;57:71–76. doi: 10.1016/j.cropro.2013.11.019. DOI

Boursier CM, Bosco D, Coulibaly A, Negre M. Are traditional neem extract preparations as efficient as a commercial formulation of azadirachtin A? Crop Prot. 2011;30:318–322. doi: 10.1016/j.cropro.2010.11.022. DOI

Mordue A, Blackwell A. Azadirachtin: an update. Journal of insect physiology. 1993;39:903–924. doi: 10.1016/0022-1910(93)90001-8. DOI

Naumann K, Isman MB. Evaluation of neem Azadirachta indica seed extracts and oils as oviposition deterrents to noctuid moths. Entomol. Exp. Appl. 1995;76:115–120. doi: 10.1111/j.1570-7458.1995.tb01953.x. DOI

Shah FM, Razaq M, Ali A, Han P, Chen J. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS One. 2017;12:e0184639. doi: 10.1371/journal.pone.0184639. PubMed DOI PMC

Reddy GV. Comparative effect of integrated pest management and farmers’ standard pest control practice for managing insect pests on cabbage (Brassica spp.) Pest Manag. Sci. 2011;67:980–985. doi: 10.1002/ps.2142. PubMed DOI

Isman MB, Grieneisen ML. Botanical insecticide research: many publications, limited useful data. Trends Plant Sci. 2014;19:140–145. doi: 10.1016/j.tplants.2013.11.005. PubMed DOI

Isman MB. Botanical insecticides: for richer, for poorer. Pest Manag. Sci. 2008;64:8–11. doi: 10.1002/ps.1470. PubMed DOI

Christen V, Kunz P, Fent K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators? Environmental Pollution. 2018;243:1588–1601. doi: 10.1016/j.envpol.2018.09.117. PubMed DOI

Bernardes RC, Tomé HV, Barbosa WF, Guedes RN, Lima MAP. Azadirachtin-induced antifeeding in Neotropical stingless bees. Apidologie. 2017;48:275–285. doi: 10.1007/s13592-016-0473-3. DOI

Burkness EC, Hutchison W. Implementing reduced-risk integrated pest management in fresh-market cabbage: improved net returns via scouting and timing of effective control. J. Econ. Entomol. 2008;101:461–471. doi: 10.1093/jee/101.2.461. PubMed DOI

Smits P, Vrie M, Vlak J. Nuclear polyhedrosis virus for control of Spodoptera exigua larvae on glasshouse crops. Entomol. Exp. Appl. 1987;43:73–80. doi: 10.1111/j.1570-7458.1987.tb02205.x. DOI

Liburd O, Funderburk J, Olson S. Effect of biological and chemical insecticides on Spodoptera species (Lep., Noctuidae) and marketable yields of tomatoes. J. Appl. Entomol. 2000;124:19–25. doi: 10.1046/j.1439-0418.2000.00418.x. DOI

Ruppel RF. Cumulative insect-days as an index of crop protection. J. Econ. Entomol. 1983;76:375–377. doi: 10.1093/jee/76.2.375. DOI

Laub CA, Luna JM. Influence of winter cover crop suppression practices on seasonal abundance of armyworm (Lepidoptera: Noctuidae), cover crop regrowth, and yield in no-till corn. Environmental entomology. 1991;20:749–754. doi: 10.1093/ee/20.2.749. DOI

Hines RL, Hutchison W. Evaluation of action thresholds and spinosad for lepidopteran pest management in Minnesota cabbage. J. Econ. Entomol. 2001;94:190–196. doi: 10.1603/0022-0493-94.1.190. PubMed DOI

Leach A, Reiners S, Fuchs M, Nault B. Evaluating integrated pest management tactics for onion thrips and pathogens they transmit to onion. Agric. Ecosyst. Environ. 2017;250:89–101. doi: 10.1016/j.agee.2017.08.031. DOI

Short BD, Khrimian A, Leskey TC. Pheromone-based decision support tools for management of Halyomorpha halys in apple orchards: development of a trap-based treatment threshold. J. Pest Sci. 2017;90:1191–1204. doi: 10.1007/s10340-016-0812-1. DOI

Severtson D, Flower K, Nansen C. Spatially-optimized sequential sampling plan for cabbage aphids Brevicoryne brassicae L.(Hemiptera: Aphididae) in canola fields. J. Econ. Entomol. 2016;109:1929–1935. doi: 10.1093/jee/tow147. PubMed DOI

de Freitas Bueno RCO, de Freitas Bueno A, Moscardi F, Postali Parra JR, Hoffmann-Campo CB. Lepidopteran larva consumption of soybean foliage: basis for developing multiple species economic thresholds for pest management decisions. Pest Manag. Sci. 2011;67:170–174. doi: 10.1002/ps.2047. PubMed DOI

Stewart J, Sears M. Economic threshold for three species of lepidopterous larvae attacking cauliflower grown in southern Ontario. J. Econ. Entomol. 1988;81:1726–1731. doi: 10.1093/jee/81.6.1726. DOI

Walker GP, et al. Development of action thresholds for management of Bactericera cockerelli and Zebra Chip disease in potatoes at Pukekohe, New Zealand. Am. J. Potato Res. 2015;92:266–275. doi: 10.1007/s12230-014-9427-3. DOI

Reddy GVP, Guerrero A. Optimum timing of insecticide applications against diamondback moth Plutella xylostella in cole crops using threshold catches in sex pheromone traps. Pest Manag. Sci. 2001;57:90–94. doi: 10.1002/1526-4998(200101)57:1<90::AID-PS258>3.0.CO;2-N. PubMed DOI

Capinera, J. L. Beet armyworm, Spodoptera exigua (Hübner)((Lepidoptera: Noctuidae). In Capinera, J.L. (ed.)(2nd ed.) Encyclopedia of Entomology 434–437 (Springer, Dordrecht, 2008).

Kim S-G, et al. Determination of economic injury levels and control thresholds for Spodoptera exigua on chinese cabbage. Korean J. Appl. Entomol. 2009;48:81–86. doi: 10.5656/KSAE.2009.48.1.081. DOI

Vanlaldiki H, Premjit M, Lalrinsanga R. Effect of staggared planting on the seasonal abundance of diamondback moth (Plutella xylostella Linn) on cabbage under North Eastern hill zone, Imphal. The Bioscan. 2013;8:1211–1215.

Saeed NA, Razaq M. Effect of sowing dates within a season on incidence and abundance of insect pests of canola crops. Pakistan J. Zool. 2014;46:1193–1203.

Zhang, G., Liu, Y., Shi, Z., Liu, S. & Shen, J. Development of practical IPM systems in autumn cabbage crops. Recent Developments in Research of Sustainable Management of Pests in Agricultural Crops in China (The National Agricultural Technology Extension and Service Centre, Ed.), 379–386 (1999).

Subramanian S, Rabindra R, Sathiah N. Economic threshold for the management of Plutella xylostella with granulovirus in cauliflower ecosystem. Phytoparasitica. 2010;38:5–17. doi: 10.1007/s12600-009-0066-z. DOI

Yang X, Margolies DC, Zhu KY, Buschman LL. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mite (Acari: Tetranychidae) J. Econ. Entomol. 2001;94:381–387. doi: 10.1603/0022-0493-94.2.381. PubMed DOI

Naik CM, Nataraj K, Santhoshakumara G. Comparative biology of Spodoptera litura on vegetable and grain soybean [Glycine max (L.) Merrill] Int. J. Curr. Microbiol. App. Sci. 2017;6:366–371. doi: 10.20546/ijcmas.2017.607.043. DOI

Zakir A, et al. Specific response to herbivore-induced de novo synthesized plant volatiles provides reliable information for host plant selection in a moth. J. Exp. Biol. 2013;216:3257–3263. doi: 10.1242/jeb.083188. PubMed DOI

Ioriatti C, Anfora G, Angeli G, Mazzoni V, Trona F. Effects of chlorantraniliprole on eggs and larvae of Lobesia botrana (Denis & Schiffermüller)(Lepidoptera: Tortricidae) Pest Manag. Sci. 2009;65:717–722. doi: 10.1002/ps.1744. PubMed DOI

Han W, et al. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae) Pest Manag. Sci. 2012;68:1184–1190. doi: 10.1002/ps.3282. PubMed DOI

Benelli G, et al. Neem (Azadirachta indica): towards the ideal insecticide? Nat. Prod. Res. 2017;31:369–386. doi: 10.1080/14786419.2016.1214834. PubMed DOI

Zhong B, Lv C, Qin W. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae) Fla. Entomol. 2017;100:215–218. doi: 10.1653/024.100.0215. DOI

Seljåsen R, Meadow R. Effects of neem on oviposition and egg and larval development of Mamestra brassicae L: Dose response, residual activity, repellent effect and systemic activity in cabbage plants. Crop Prot. 2006;25:338–345. doi: 10.1016/j.cropro.2005.05.007. DOI

Gajmer T, Singh R, Saini R, Kalidhar S. Effect of methanolic extracts of neem (Azadirachta indica A. Juss) and bakain (Melia azedarach L) seeds on oviposition and egg hatching of Earias vittella (Fab.) (Lep., Noctuidae) J. Appl. Entomol. 2002;126:238–243. doi: 10.1046/j.1439-0418.2002.00649.x. DOI

Ahmad S, Ansari MS, Muslim M. Toxic effects of neem based insecticides on the fitness of Helicoverpa armigera (Hübner) Crop Prot. 2015;68:72–78. doi: 10.1016/j.cropro.2014.11.003. DOI

Charleston DS, Kfir R, Dicke M, Vet LEM. Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: A field test of laboratory findings. Biol. Control. 2006;39:105–114. doi: 10.1016/j.biocontrol.2006.05.012. DOI

Feng R, Isman M. Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Cell. Mol. Life Sci. 1995;51:831–833. doi: 10.1007/BF01922438. DOI

Maltais P, Nuckle J, Leblanc P. Economic threshold for three lepidopterous larval pests of fresh-market cabbage in southeastern New Brunswick. J. Econ. Entomol. 1998;91:699–707. doi: 10.1093/jee/91.3.699. DOI

Lahm GP, et al. Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators. Bioorg. Med. Chem. Lett. 2005;15:4898–4906. doi: 10.1016/j.bmcl.2005.08.034. PubMed DOI

Jeschke P, Nauen R. Neonicotinoids—from zero to hero in insecticide chemistry. Pest Manag. Sci. 2008;64:1084–1098. doi: 10.1002/ps.1631. PubMed DOI

Demkovich MR, Siegel JP, Walse SS, Berenbaum MR. Impact of agricultural adjuvants on the toxicity of the diamide insecticides chlorantraniliprole and flubendiamide on different life stages of the navel orangeworm (Amyelois transitella) J. Pest Sci. 2018;91:1127–1136. doi: 10.1007/s10340-018-0959-z. DOI

Zhang Z, et al. Nitenpyram seed treatment effectively controls against the mirid bug Apolygus lucorum in cotton seedlings. Scientific Reports. 2017;7:8573. doi: 10.1038/s41598-017-09251-9. PubMed DOI PMC

Kleeberg H, Hummel E, Ruch B, Walther N. NeemAzal-T/S-current status of registration and maximum residue levels in the EU. Short Contributions. 2010;4:326–329.

Kleeberg, H. In Neem based products: registration requirements, regulatory processes and global implications. In Neem: Today and in the new millennium pp. 109–123 (Springer, Dordrecht, 2004).

Pair S, Raulston J, Sparks A, Martin P. Fall armyworm (Lepidoptera: Noctuidae) parasitoids: differential spring distribution and incidence on corn and sorghum in the Southern United States and Northeastern México. Environ. Entomol. 1986;15:342–348. doi: 10.1093/ee/15.2.342. DOI

Martin J. The identification of common aphid pests of tropical agriculture. Int. J. Pest Manage. 1983;29:395–411.

EPPO. PM 7/124 (1) Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. Bulletin OEPP/EPPO Bulletin45, 410–444 (2015).

Passoa, S. C. Identification guide to larval Heliothinae (Lepidoptera: Noctuidae) of quarantine significance. U.S. Dep. Agric. Report Columbus, OHIO 43212 (2004).

Gilligan, T. & Passoa, S. LepIntercept–An identification resource for intercepted lepidoptera larvae. Identification Technology Program (ITP), Fort Collins, CO, 1–3 (2014).

Din M, Qasim M, Jan N. Response of different sowing dates on the growth and yield of cauliflower. Sarhad J. Agric. 2007;23:289–292.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...