PIN2 Polarity Establishment in Arabidopsis in the Absence of an Intact Cytoskeleton
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31181636
PubMed Central
PMC6628292
DOI
10.3390/biom9060222
PII: biom9060222
Knihovny.cz E-zdroje
- Klíčová slova
- PIN auxin efflux carriers, actin, cell polarity, cytoskeleton, live-cell imaging, microtubules, polarity establishment,
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- cytoskelet metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- PIN2 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
Cell polarity is crucial for the coordinated development of all multicellular organisms. In plants, this is exemplified by the PIN-FORMED (PIN) efflux carriers of the phytohormone auxin: The polar subcellular localization of the PINs is instructive to the directional intercellular auxin transport, and thus to a plethora of auxin-regulated growth and developmental processes. Despite its importance, the regulation of PIN polar subcellular localization remains poorly understood. Here, we have employed advanced live-cell imaging techniques to study the roles of microtubules and actin microfilaments in the establishment of apical polar localization of PIN2 in the epidermis of the Arabidopsis root meristem. We report that apical PIN2 polarity requires neither intact actin microfilaments nor microtubules, suggesting that the primary spatial cue for polar PIN distribution is likely independent of cytoskeleton-guided endomembrane trafficking.
Zobrazit více v PubMed
Paciorek T., Friml J. Auxin signaling. J. Cell Sci. 2006;119:1199–1202. doi: 10.1242/jcs.02910. PubMed DOI
Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC
Brumos J., Robles L.M., Yun J., Vu T.C., Jackson S., Alonso J.M., Stepanova A.N. Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Dev. Cell. 2018;47:306–318. doi: 10.1016/j.devcel.2018.09.022. PubMed DOI
Wisniewska J., Xu J., Seifertová D., Brewer P.B., Ruzicka K., Blilou I., Rouquié D., Benková E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell Online. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Geldner N., Friml J., Stierhof Y.-D.D., Jürgens G., Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413:425–428. doi: 10.1038/35096571. PubMed DOI
Kleine-Vehn J., Langowski L., Wisniewska J., Dhonukshe P., Brewer P.B., Friml J. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol. Plant. 2008;1:1056–1066. doi: 10.1093/mp/ssn062. PubMed DOI
Boutté Y., Crosnier M.T., Carraro N., Traas J., Satiat-Jeunemaitre B. The plasma membrane recycling pathway and cell polarity in plants: Studies on PIN proteins. J. Cell Sci. 2006;119:1255–1265. doi: 10.1242/jcs.02847. PubMed DOI
Men S., Boutté Y., Ikeda Y., Li X., Palme K., Stierhof Y.-D., Hartmann M.-A., Moritz T., Grebe M. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat. Cell Biol. 2008;10:237–244. doi: 10.1038/ncb1686. PubMed DOI
Glanc M., Fendrych M., Friml J. Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nat. Plants. 2018;4:1082–1088. doi: 10.1038/s41477-018-0318-3. PubMed DOI PMC
Smertenko A., Assaad F., Baluška F., Bezanilla M., Buschmann H., Drakakaki G., Hauser M.T., Janson M., Mineyuki Y., Moore I., et al. Plant Cytokinesis: Terminology for Structures and Processes. Trends Cell Biol. 2017;27:885–894. doi: 10.1016/j.tcb.2017.08.008. PubMed DOI
Dhonukshe P., Tanaka H., Goh T., Ebine K., Mähönen A.P., Prasad K., Blilou I., Geldner N., Xu J., Uemura T., et al. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature. 2008;456:962–966. doi: 10.1038/nature07409. PubMed DOI PMC
Laňková M., Humpolíčková J., Vosolsobě S., Cit Z., Lacek J., Čovan M., Čovanová M., Hof M., Petrášek J. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy. Microsc. Microanal. 2016;22:290–299. doi: 10.1017/S1431927616000568. PubMed DOI
Adamowski M., Narasimhan M., Kania U., Glanc M., De Jaeger G., Friml J. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis. Plant Cell. 2018;30:700–716. doi: 10.1105/tpc.17.00785. PubMed DOI PMC
Kleine-Vehn J., Wabnik K., Martinière A., Łangowski Ł., Willig K., Naramoto S., Leitner J., Tanaka H., Jakobs S., Robert S., et al. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol. Syst. Biol. 2011;7:540. doi: 10.1038/msb.2011.72. PubMed DOI PMC
Kitakura S., Vanneste S., Robert S., Löfke C., Teichmann T., Tanaka H., Friml J. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell. 2011;23:1920–1931. doi: 10.1105/tpc.111.083030. PubMed DOI PMC
Mravec J., Petrášek J., Li N., Boeren S., Karlova R., Kitakura S., Pařezová M., Naramoto S., Nodzyński T., Dhonukshe P., et al. Cell Plate Restricted Association of DRP1A and PIN Proteins Is Required for Cell Polarity Establishment in Arabidopsis. Curr. Biol. 2011;21:1055–1060. doi: 10.1016/j.cub.2011.05.018. PubMed DOI
Dhonukshe P., Aniento F., Hwang I., Robinson D.G., Mravec J., Stierhof Y.-D.D., Friml J.J. Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Curr. Biol. 2007;17:520–527. doi: 10.1016/j.cub.2007.01.052. PubMed DOI
Furutani M., Sakamoto N., Yoshida S., Kajiwara T., Robert H.S., Friml J., Tasaka M. Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development. 2011;138:2069–2078. doi: 10.1242/dev.057745. PubMed DOI
Wang Y.-S., Motes C.M., Mohamalawari D.R., Blancaflor E.B. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil. Cytoskeleton. 2004;59:79–93. doi: 10.1002/cm.20024. PubMed DOI
Marc J., Granger C., Brincat J., Fisher D., Kao T., McCubbin A., Cyr R. A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell. 1998;10:1927–1940. doi: 10.2307/3870914. PubMed DOI PMC
Dubrovsky J.G., Sauer M., Napsucialy-Mendivil S., Ivanchenko M.G., Friml J., Shishkova S., Celenza J., Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. USA. 2008;105:8790–8794. doi: 10.1073/pnas.0712307105. PubMed DOI PMC
Clough S.J., Bent A.F. Floral dip: A simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
von Wangenheim D., Hauschild R., Fendrych M., Barone V., Benková E., Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. Elife. 2017;6:e26792. doi: 10.7554/eLife.26792. PubMed DOI PMC
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth